Tổng các số tự nhiên a1,a2,a3,...,a49 bằng 900.Hỏi ƯCLN của chúng có thể nhận giá trị lớn nhất bằng bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 10 số tự nhiên đó là: \(a_1;a_2;a_3;a_4;...;a_{10}\) có d là ƯCLN
\(\Rightarrow\left\{{}\begin{matrix}a_1=dk_1\\a_2=dk_2\\...\\a_{10}=dk_{10}\end{matrix}\right.\left(k_1;k_2;k_3;...;k_{10}\in N|k_1\ge1;k_2\ge1;...\right)\)
Ta có: \(a_1+a_2+a_3+...+a_{10}=280\) (đề bài)
\(\Rightarrow dk_1+dk_2+dk_3+...+dk_{10}=280\)
\(\Rightarrow d\left(k_1+k_2+k_3+...+k_{10}\right)=280\)
Đặt: \(k_1+k_2+k_3+...+k_{10}=n\left(n\in N\right)\)
\(\Rightarrow d.n=280\) vậy để d là số lớn nhất thì n phải nhỏ nhất
Do: \(\left\{{}\begin{matrix}k_1\ge1\\k_2\ge1\\...\\k_{10}\ge1\end{matrix}\right.\Rightarrow n=k_1+k_2+k_3+...+k_{10}\ge1+1+...+1=10\)
Số n nhỏ nhất là 10 khi đó số d lớn nhất là:
\(d_{max}=\dfrac{280}{10}=28\)
Vậy: ...