K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2023

Gọi 10 số tự nhiên đó là: \(a_1;a_2;a_3;a_4;...;a_{10}\) có d là ƯCLN

 \(\Rightarrow\left\{{}\begin{matrix}a_1=dk_1\\a_2=dk_2\\...\\a_{10}=dk_{10}\end{matrix}\right.\left(k_1;k_2;k_3;...;k_{10}\in N|k_1\ge1;k_2\ge1;...\right)\) 

Ta có: \(a_1+a_2+a_3+...+a_{10}=280\) (đề bài) 

\(\Rightarrow dk_1+dk_2+dk_3+...+dk_{10}=280\)

\(\Rightarrow d\left(k_1+k_2+k_3+...+k_{10}\right)=280\)

Đặt: \(k_1+k_2+k_3+...+k_{10}=n\left(n\in N\right)\)

\(\Rightarrow d.n=280\) vậy để d là số lớn nhất thì n phải nhỏ nhất  

Do: \(\left\{{}\begin{matrix}k_1\ge1\\k_2\ge1\\...\\k_{10}\ge1\end{matrix}\right.\Rightarrow n=k_1+k_2+k_3+...+k_{10}\ge1+1+...+1=10\) 

Số n nhỏ nhất là 10 khi đó số d lớn nhất là:

\(d_{max}=\dfrac{280}{10}=28\)

Vậy: ...