Có tồn tại hay không số tự nhiên n biết n được viết bởi một chữ số 1, hai chữ số 2, ba chữ
số 3, …, chín chữ số 9 và n là lập phương của 1 số tự nhiên khác. Giúp mình với. Mình cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu cmr tồn tại 1 số là bội của 19 có tổng các chữ số là 19:
tồn tại số là bội của 19 có tổng các chữ số là 19. VD: 874
Xét 2015 số:
\(a_1=2\)
\(a_2=22\)
...
\(a_{2015}=222...2\)(2015 chữ số 2)
Nếu như có một trong 2015 số này chia hết cho 2015 thì bài toán được cm (do số đó chỉ gồm các chữ số 2
Nếu như không có số nào chia hết cho 2015, thì thì theo nguyên lí Dirichlet ít nhất 2 trong 2015 số này có cùng số dư khi chia 2015 (do chỉ có tối đa 2015 số dư từ 1 đến 2014). Hai số này chia hết cho 2015 do cùng số dư
Giả sử hai số đó là \(a_i\)và \(a_j\)(i<j)
\(\Rightarrow a_j-a_i=222...200...0\)(có i chữ số 0 và j-i chữ số 2) chia hết cho 2015
\(\Rightarrow\)đpcm
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm
\(S=\overline{abc}+\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}\), ta có \(a,b,c\ne0\).
\(S=100a+10b+c+100a+10c+b+...+100c+10b+a\)
\(S=222\left(a+b+c\right)\)
Ta thấy \(222=2.3.37\) nên muốn \(S\) là số chính phương thì \(a+b+c=2^x.3^y.37^z\) với \(x,y,z\) là các số tự nhiên lẻ. Do đó \(x,y,z\ge1\) hay \(a+b+c\ge222\), vô lí.
Vậy không tồn tại số tự nhiên có 3 chữ số \(a,b,c\) thỏa mãn S là số chính phương.
mà Lê Song Phương ơi
mình cần bạn giải chi tiết ra đoạn từ dòng số 2 xuống dòng số 3 mình giải được:
2x(aaa+bbb+ccc)
2x111x(a+b+c)
222x(a+b+c)
đk bạn
cho mình lời giải nữa nhé