Cho biểu thức A=n+5/n-1 ,tìm số nguyên n để
a. biểu thức A là phân số tối giản
b. biểu thức A là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Để A nguyên thì:
n+5 chia hết n-1
Ta có:
n+5 chia hết n-1
n-1 chia hết n-1
=> (n+5) -( n-1) chia hết n-1
=> n+5-n+1 chia hết n-1
5+1 chi hết n-1
6 chia hết n-1
=> n-1 thuộc Ư(6)
Mà Ư(6)= { 1;-1;2;-2;3;-3;6;-6}
Ta lập bảng
n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 2 | 0 | 3 | -1 | 4 | -2 | 7 | -5 |
Vậy n = {2;0;3;-1;4;-2;7;-5}
a, -5/n-2 là phân số <=> n-2 khác 0<=> n khác 2 b,-5/n-2 nguyên <=> n-2 thuộc Ư(-5) <=> n-2 thuộc {-5;-1;1;5} <=> n thuộc {-3;1;3;7}
a, NẾu Để A là phân số thì
n - 2 khác 0 => n khác 2
VẬy các số nguyên n khác 2 thì biểu thức A là phân số
b, Để A = -5/n-2 ( mình cứ viết vậy chứ 5 và -5 chẳng khác gì )
LÀ số nguyên thì -5 chia hết cho n -2=> n - 2 thuộc ước -5
-5 có các ước nguyên là -1 ; 1 ; -5 ; 5
(+) n - 2 = -1 => n = 1
(+) n - 2 = 1 => n = 3
(+) n - 2 = -5 => n = -3
(+) n - 2 = 5 => n = 7
a) Ta có :
Để : \(A\text{=}\dfrac{n-2}{n+5}\) là phân số \(\Leftrightarrow A\text{=}mẫu\left(n+5\right)\ne0\)
\(\Leftrightarrow n\ne-5\)
Vậy để A là phân số \(\Leftrightarrow n\ne5\)
b) Ta có : \(A\text{=}\dfrac{n-2}{n+5}\text{=}\dfrac{n+5-7}{n+5}\text{=}\dfrac{n+5}{n+5}-\dfrac{7}{n+5}\text{=}1-\dfrac{7}{n+5}\)
Để : \(A\in Z\Leftrightarrow\dfrac{7}{n+5}\in Z\Leftrightarrow n+5\inƯ\left(7\right)\)
mà \(Ư\left(7\right)\text{=}\left(1;-1;7;-7\right)\)
\(\Rightarrow n\in\left(-4;-6;2;-12\right)\)
\(Vậy...\)
a) Để A là phân số
=> n-4 thuộc Z và n-4 khác 0
=> n thuộc Z và n khác 4
b) Để A là số nguyên
=> n-4 chia hết cho 5 => n-4 thuộc Ư(5) = { 1;-1;5;-5}
Sau đó ta quay về cách tìm số n biết nó thuộc ước của 1 số
chú thích:
=> : suy ra
Ư : ước
a) Ta có n+1 chia hết cho n-3
suy ra n-3+4 chia hết cho n-3
Vì n-3 chia hết cho n-3 nên 4 chia hết cho n-3
nên n-3 thuộc Ư(4)
Ư(4)= (1 ;-1;2;-2;4;-4)
Mà n-3 thuộc Ư (4) nên n thuộc ( 4;2;5;1;7;-1)
thỏa mãn điều kiện n khác 3
b)Gọi d là các ước nguyên tố của n+1 và n-3
suy ra n+1 chia hết cho d (1)
và n-3 chia hết cho d (2)
Lấy (1) trừ đi (2) ta được
(n+1)-(n-3) chia hết cho d
=4 chia hết cho d
suy ra d =4
Ta thấy n+1 chia hết cho 4 thì n-3 chia hết cho 4
vậy n-3-4 chia hết cho 4
suy ra n = 4k + 4+3
n = 4k +7
Vậy để A là phân số tối giản thì n=4k+7