Tìm x đề:
a)
b)
c)
d)
e)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5x-x^2=-\left(x^2-5x\right)=-\left[x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right]=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì \(\left(x-\frac{5}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-\frac{5}{2}\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\left(x\in R\right)\)
Vậy \(Max_A=\frac{25}{4}\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
\(B=x-x^2=-\left(x^2-x\right)=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=-\left(x-\frac{1}{2}^2\right)+\frac{1}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\left(x\in R\right)\)
Vậy \(Max_B=\frac{1}{4}\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(C=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2.x.2+2^2-7\right)=-\left(x-2\right)^2+7\)
Vì \(\left(x-2\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-2\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-2\right)^2+7\le7\left(x\in R\right)\)
Vậy \(Max_C=7\)khi \(x-2=0\Leftrightarrow x=2\)
\(D=-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-2.x.3+3^2+2\right)=-\left(x-3^2\right)-2\)
Vì \(\left(x-3\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-3\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-3\right)^2-2\le-2\left(x\in R\right)\)
Vậy \(Max_D=-2\)khi \(x-3=0\Leftrightarrow x=3\)
\(E=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+2.x.4+4^2-21\right)=-\left(x+4\right)^2+21\)
Vì \(\left(x+4\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x+4\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x+4\right)^2+21\le21\left(x\in R\right)\)
Vậy \(Max_E=21\)khi \(x+4=0\Leftrightarrow x=-4\)
F= \(4x-x^2+1=-\left(x^2-4x-1\right)=-\left(x^2-2.x.2+2^2-5\right)=-\left(x-2\right)^2+5\)
Vì \(\left(x-2\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-2\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-2\right)^2+5\le5\left(x\in R\right)\)
Vậy \(Max_F=5\)khi \(x-2=0\Leftrightarrow x=2\)
\(X=\left\{e,c,d\right\}\\ X=\left\{g,c,d\right\}\\ X=\left\{e,g,c,d\right\}\)
`X \\ B = C <=> X = B ∪ C`
`B ∪ C = {a,b,c,d,e,g}`
`=> X={a,b,c,d,e,g}`.
a) B = x - x2 + 2
= \(-\left(x^2-x+\frac{1}{4}-\frac{1}{4}-2\right)=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
=> Max B = 9/4
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy Max B = 9/4 <=> x = 1/2
d) Ta có P = \(x-x^2-1=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}+1\right)=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)
=> Max P = -3/4
Dấu "=" xảy ra <=> x -1/2 = 0 <=> x = 1/2
Vậy Max P = -3/4 <=> x = 1/2
d) \(\sqrt[]{x}>x\)
\(\Leftrightarrow x-\sqrt[]{x}< 0\)
\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\left(x\ge0\right)\)
\(\Leftrightarrow0< x< 1\)
a) \(P\left(x\right):"x^2-5x+4=0"\)
\(x^2-5x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
Vậy \(x\in\left\{1;4\right\}\) để \(P\left(x\right):"x^2-5x+4=0"\) đúng
b) \(P\left(x\right):"x^2-5x+6=0"\)
\(x^2-5x+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{2;3\right\}\) để \(P\left(x\right):"x^2-5x+6=0"\) đúng
c) \(P\left(x\right):"x^2-3x=0"\)
\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{0;3\right\}\) để \(P\left(x\right):"x^2-3x=0"\) đúng
d) \(P\left(x\right):"\sqrt[]{x}>x"\)
\(\sqrt[]{x}>x\)
\(\Leftrightarrow x-\sqrt[]{x}< 0\)
\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\)
\(\Leftrightarrow0< x< 1\)
Vậy \(x\in\left(0;1\right)\) để \(P\left(x\right):"\sqrt[]{x}>x"\) đúng
e) \(P\left(x\right):"2x+3< 7"\)
\(2x+3< 7\)
\(\Leftrightarrow2x< 4\)
\(\Leftrightarrow x< 2\)
Vậy \(x\in(-\infty;2)\) để \(P\left(x\right):"2x+3< 7"\) đúng
f) \(P\left(x\right):"x^2+x+1>0"\)
\(x^2+x+1>0\)
\(\Leftrightarrow x^2+x+\dfrac{1}{4}+\dfrac{3}{4}>0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Leftrightarrow\forall x\in R\) để \(P\left(x\right):"x^2+x+1>0"\) đúng
\(Ư\left(30\right)=\left\{1;2;3;5;6;10;15;30\right\}\\ \Rightarrow x=5\left(B\right)\\ B\left(8\right)=\left\{0;8;16;24;32;...\right\}\\ \Rightarrow x=24\left(B\right)\)
a/\(3x-15=0\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
Vậy nghiệm của A là x = 5
b/\(\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy nghiệm của B là \(x\in\left\{2;-3\right\}\)
c/\(\left(2x-1\right)\left(x^2+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\x^2+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\x^2=-2\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy nghiệm của C là \(x=\dfrac{1}{2}\)
d/\(3x^2-6x=0\)
\(\Rightarrow x\left(3x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy nghiệm của D là \(x\in\left\{0;2\right\}\)
e/\(2x\left(x-3\right)-5\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=5\\x=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\)
Vậy nghiệm của E là \(x\in\left\{\dfrac{5}{2};3\right\}\)
x = 3
x =5