K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Gọi I là giao điểm của ( d 1 ) và ( d 2 ). Khi đó tọa độ của I là nghiệm của hệ phương trình: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tọa độ điểm I là I(5; -1)

Đường thẳng (d): y = (2m – 5)x – 5m đi qua I(5; -1) nên tọa độ của I nghiệm đúng phương trình đường thẳng:

Ta có: -1 = (2m – 5).5 – 5m ⇔ -1 = 10m – 25 – 5m

⇔ 5m = 24 ⇔ m = 24/5

Vậy với m = 24/5 thì đường thẳng (d) đi qua giao điểm của hai đường thẳng ( d 1 ) và ( d 2 ).

Tọa độ giao điểm của hai đường thẳng (d1) và (d2) là:

\(\left\{{}\begin{matrix}2x-3y=12\\3x+4y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}8x-12y=48\\9x+12y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x=51\\3x+4y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=3\\4y=1-3x=1-3\cdot3=-8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

Thay x=3 và y=-2 vào (d), ta được:

\(3\left(2m+3\right)-3m+4=-2\)

=>6m+9-3m+4=-2

=>6m+13=-2

=>6m=-15

=>\(m=-\dfrac{5}{2}\)

26 tháng 1

giúp em câu này với :((

 

1 tháng 12 2017

a, pt hoanh độ giao điểm cua 2 đg thẳng d1 và d2 la: 2x - 5 = 1 <=> x = 3

vậy tọa độ giao điểm cua d1 va d2 la A(3;1)

Để d1 , d2, d3 đồng quy thì d3 phải đi qua diem A(3;1)

Ta co pt: (2m - 3).3 - 1 = 1

<=> 6m - 9 -1 = 1

<=> 6m = 11 <=> m = 11/6

mấy bài còn lại tương tự nha

11 tháng 3 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vẽ đường thẳng ( d 1 ) là đồ thị hàm số y = -x + 2

Cho x = 0 thì y = 2 ⇒ (0; 2)

Cho y = 0 thì x = 2 ⇒ (2; 0)

Vẽ đường thẳng ( d 2 ) là đồ thị hàm số Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Cho x = 0 thì y = 0 ⇒ (0; 0)

Cho x = 3 thì y = -2 ⇒ (3; -2)

Hai đường thẳng ( d 1 ) và ( d 2 ) cắt nhau tại A(6; -4). Thay các giá trị x và y này vào phương trình đường thẳng ( d 3 ), ta có:

3.6 + 2.(-4) = 18 – 8 = 10.

Vậy x và y thỏa phương trình 3x + 2y = 10 nên (x; y) = (6; -4) là nghiệm của phương trình 3x + 2y = 10.

13 tháng 11 2023

a: Tọa độ giao điểm của đường thẳng (d1) và đường thẳng (d2) là:

\(\left\{{}\begin{matrix}3x-1=2x+1\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2x=2+1\\y=2x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=3\\y=2\cdot3+1=7\end{matrix}\right.\)

Thay x=3 và y=7 vào (d), ta được:

\(3\left(4m+5\right)-2m+7=7\)

=>\(12m+15-2m=0\)

=>10m=-15

=>m=-3/2

b: để (d)//(d3) thì \(\left\{{}\begin{matrix}4m+5=-3\\-2m+7< >2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4m=-3-5=-8\\-2m< >-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m< >\dfrac{5}{2}\end{matrix}\right.\)

=>m=-2

NV
13 tháng 4 2019

Giao điểm A của d1 và d2 là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-2y+5=0\\2x-3y+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\) \(\Rightarrow A\left(1;3\right)\)

Do \(d//d_3\Rightarrow d\) nhận \(\overrightarrow{n_d}=\left(3;4\right)\) là 1 vtpt

Phương trình d:

\(3\left(x-1\right)+4\left(y-3\right)=0\Leftrightarrow3x+4y-15=0\)

11 tháng 11 2018

Ta có: (d2): y=3x-2y=1 => y: 3x-2y-1

Phương trình tung độ giao điểm của (d1) và (d2) là:

3x-2 = 3x-2y-1 => 3x-3x+2y=-1+2 => 2y=1 => y = 1/2

                                                               => x = (1/2+2):3 = 5/6

Vậy (d1) và (d2) cùng đi qua điểm C(5/6; 1/2)

Thay x = 5/6 và y = 1/2 vào (d3) ta được: 1/2 = (m-2).5/6+2m-3

                                                         => 1/2 = 5/6m - 5/3 + 2m - 3

                                                         => 31/6 = 17/6 m

                                                         => m    = 31/17

Vậy m = 31/17 thì 3 đường thẳng (d1);(d2);(d3) cùng đi qua 1 điểm