K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 4 2019

Lời giải:

Xét số hạng tổng quát \(\frac{1}{n^3}\)

\((n-1)(n+1)=n^2-1< n^2\)

\(\Rightarrow (n-1)n(n+1)< n^3\)

\(\Rightarrow \frac{1}{(n-1)n(n+1)}>\frac{1}{n^3}\)

Thay $n=2,3,4,.....$. Khi đó ta có:

\(\frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}<\underbrace{ \frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{(n-1)n(n+1)}}_{A}(*)\)

Mà:

\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{(n+1)-(n-1)}{(n-1)n(n+1)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{(n-1)n}-\frac{1}{n(n+1)}\)

\(=\frac{1}{2}-\frac{1}{n(n+1)}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{4}(**)\)

Từ \((*) ;(**)\Rightarrow \frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}< \frac{1}{4}\)

Ta có đpcm.

\(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}

22 tháng 4 2021

câu a thì quy đồng bỏ mẫu là ra nha

 

26 tháng 9 2019

bú lồn mả bà mày trả 

26 tháng 9 2019

bạn Phạm Hữu Tiến, bạn mất dạy vừa thôi nha mình chưa làm j bạn, mình chỉ hỏi bài các bạn thôi, bạn không trả lời đc thì thôi chứ sao bạn lại nói tục như vậy?????????

14 tháng 1 2017

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(< \left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng vào bài toán ta được

\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

\(\RightarrowĐPCM\)