K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số phát biểu đúng 1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho 2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy 3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường...
Đọc tiếp

Số phát biểu đúng

1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho

2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy

3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường thẳng đó hoặc trùng với một trong 2 đường thẳng đó

4.     2 đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau

5.     Nếu đường thẳng d không nằm trong mặt phẳng ( ) và d song song với đường thẳng d’ nằm trong ( ) thì d song song với ( )

6.     Cho đường thẳng a song song với mặt phẳng . Nếu mặt phẳng  chứa a và cắt  theo giao tuyến b thì b song song với a

7.     Nếu 2 mặt phẳng cùng song song với 1 đường thẳng thì giao tuyến của chúng ( nếu có ) cũng song song với đường thẳng đó

     8. Cho 2 đường thẳng chéo nhau. Có vô số mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.

A. 8

B. 7

C. 6

D. 5

1
5 tháng 2 2018

Đáp án C

2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau

8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia

30 tháng 5 2018

Gọi I = d1 ∩ d2; (P) là mặt phẳng chứa (d1) và (d2).

Gọi d3 ∩ d1 = M; d3 ∩ d2 = N.

+ M ∈ d1, mà d1 ⊂ (P) ⇒ M ∈ (P)

+ N ∈ d2, mà d2 ⊂ (P) ⇒ N ∈ (P).

Nếu M ≠ N ⇒ d3 có hai điểm M, N cùng thuộc (P)

⇒ d3 ⊂ (P)

⇒ d1; d2; d3 đồng phẳng (trái với giả thiết).

⇒ M ≡ N

⇒ M ≡ N ≡ I

Vậy d1; d2; d3 đồng quy.

Bài 3:

a: 2 miền

b: 6 miền

c: 12 miền

22 tháng 2 2023

Ghi lời giải ra đc ko bạn

 

7 tháng 5 2020

Gọi các đường thẳng đã cho là \(d_1;d_2;d_3;.....;d_{1992}\) và \(A_{ij}\) là giao điểm của \(d_i;d_j\) với \(i,j\in\left[1;1992\right]\)

Xét đường thẳng \(d_n\) bất kỳ trong 1992 đường thẳng trên 

Do không có 3 đường nào đồng quy nên \(A_{ij}\notin d_n\)

Giả sử điểm \(A_{ij}\) gần đường thẳng \(d_n\) nhất

Ta đi chứng minh tam giác \(A_{ij}A_{ni}A_{nj}\) là tam giác xanh 

Giả sử tam giác này bị một đường thẳng \(d_m\) nào đó cắt thì \(d_m\) cắt ít nhất một trong 2 đoạn \(A_{ij}A_{ni};A_{ij}A_{nj}\)

Giả sử \(d_m\) cắt \(A_{ij}A_{ni}\) tại điểm \(A_{mi}\) thì \(A_{mi}\) gần \(d_n\) nhất ( trái giả thiết )

Vậy mỗi đường thẳng \(d_n\) bất kỳ thì luôn tồn tại một tam giác xanh có cạnh nằm trên \(d_n\)

Khi đó số tam giác xanh không ít hơn \(1992:3=664\)