\(\hept{\begin{cases}x+y+\frac{2}{x}+\frac{1}{y}=\frac{19}{3}\\xy+\frac{1}{xy}=\frac{10}{3}\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
sử dụng bất đẳng thức đối với pt2 he 1
pt 2<=>\(xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=4\)
áp dụng bdt cô si ta dễ dàng chứng minh được VT>=4. dau = xay ra <=>x=y=1
nhưng x,y có không âm đâu mà được phép áp dụng cosi
a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)
b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)
\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)
e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn
Bài 1:
Ta có:
[tex]\left\{\begin{matrix} xy^{2}+x+y+\frac{1}{y}=4 & \\ y^{2}+x+\frac{1}{y}=3 & \end{matrix}\right.(y\neq 0)[/tex]
Từ phương trình suy ra:
[tex]\left\{\begin{matrix} y(xy+1)+\frac{xy+1}{y}=4 & \\ y^{2}+\frac{xy+1}{y}=3 & \end{matrix}\right.[/tex]
Đặt [tex]xy+1=a,y=b(b\neq 0)[/tex] ta có:
[tex]\left\{\begin{matrix} b^{2}+\frac{a}{b}=3 & \\ ab+\frac{a}{b}=4 & \end{matrix}\right.[/tex]
[tex]\Rightarrow \left\{\begin{matrix} 3b-b^{3}=a & \\ ab^{2}+a=4b & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3b-b^{3}=a & \\ b\left ( 2b^{2}-b^{4}-1 \right )=0 & \end{matrix}\right.[/tex]
[tex]\Leftrightarrow \left\{\begin{matrix} b=0 & \\ a=0 & \end{matrix}\right.[/tex](Loại) hoặc [tex]\left\{\begin{matrix} b=1 & \\ a=2 & \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} b=-1 & \\ a=-2 & \end{matrix}\right.[/tex]
TH1: [tex]\left\{\begin{matrix} b=1 & \\ a=2 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1 & \\ y=1 & \end{matrix}\right.[/tex]
TH2: [tex]\left\{\begin{matrix} b=-1 & \\ a=-2 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=3 & \\ y=-1 & \end{matrix}\right.[/tex]
Vậy hệ phương trình có hai nghiệm: [tex]\left\{\begin{matrix} x=1 & \\ y=1 & \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} x=3 & \\ y=-1 & \end{matrix}\right.[/tex]
+) đặt \(a=x+\frac{1}{y};b=y+\frac{1}{x}\)
=> \(ab=\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=xy+\frac{1}{xy}+2=>xy+\frac{1}{xy}=ab-2\)
+) khi đó thay zô hệ phương trình ta đc
\(\hept{\begin{cases}a+b=\frac{9}{2}\\\frac{1}{4}+\frac{3}{2}a=ab-2\end{cases}\Rightarrow\hept{\begin{cases}2a+2b=9\\-4ab+6a+9=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}2b=9-2a\\-2a\left(9-2a\right)+6a+9=0\end{cases}\Leftrightarrow\hept{\begin{cases}2b=9-2a\\4a^2-12a+9=0\end{cases}\Leftrightarrow}\hept{\begin{cases}2b=9-2a\\\left(2a-3\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=\frac{3}{2}\\b=3\end{cases}}}\)
+) trả zề biến x,y ta đc
\(\hept{\begin{cases}x+\frac{1}{y}=\frac{3}{2}\\y+\frac{1}{x}=3\end{cases}\Leftrightarrow\hept{\begin{cases}xy-\frac{3}{2}y+1=0\\xy-3x+1=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(xy-\frac{3}{2}y+1\right)-\left(xy-3x+1\right)=0\\xy-3x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}y+3x=0\\xy-3x+1=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2x\\2x^2-3x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=2x\\2x^2-2x-x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=2x\\\left(x-1\right)\left(2x-1=0\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}hoặc\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}}\)
+) thử lại ta thấy bộ số
\(\left(1;2\right);\left(\frac{1}{2};1\right)\)thỏa mãn hệ phương trình
zậy hệ phương trình có tập nghiệm (x,y) thuộc (1,2) ;(1/2 ;1)
ĐKXĐ : \(x\ne0;y\ne0\)
Giải pt thứ 2 ta được
\(xy+\frac{1}{xy}=\frac{10}{3}\)
\(\Leftrightarrow\frac{\left(xy\right)^2+1}{xy}=\frac{10}{3}\)
\(\Leftrightarrow3\left(xy\right)^2+3=10xy\)
\(\Leftrightarrow3\left(xy\right)^2-10xy+3=0\)
\(\Leftrightarrow\left(xy-3\right)\left(3xy-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}xy=3\\xy=\frac{1}{3}\end{cases}}\left(TmĐK\right)\)
*Với \(xy=3\)
Giải pt (1) được
\(x+y+\frac{2}{x}+\frac{1}{y}=\frac{19}{3}\)
\(\Leftrightarrow x+y+\frac{2y+x}{xy}=\frac{19}{3}\)
\(\Leftrightarrow x+y+\frac{x+2y}{3}=\frac{19}{3}\)
\(\Leftrightarrow3x+3y+x+2y=19\)
\(\Leftrightarrow4x+5y=19\)
Ta có hệ mới \(\hept{\begin{cases}4x+5y=19\\xy=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{19-5y}{4}\\\frac{19-5y}{4}.y=3\left(#\right)\end{cases}}\)
Giải (#) được\(\left(#\right)\Leftrightarrow19y-5y^2=12\)
\(\Leftrightarrow5y^2-19y+12=0\)
\(\Leftrightarrow\left(y-3\right)\left(5y-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=3\\y=\frac{4}{5}\end{cases}}\)
+) Với \(y=3\Rightarrow x=\frac{19-5y}{4}=\frac{19-5.3}{4}=1\)(Tm)
+) với \(y=\frac{4}{5}\Rightarrow x=\frac{19-5y}{4}=\frac{19-\frac{5.4}{5}}{4}=\frac{15}{4}\)(Tm)
Làm tương tự với trường hợp xy=1/3 nhé