cmr \(n^3-n+2\) không chia hết cho 6 với mọi n\(\in N\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử n^2+n+6 chia hết cho5 thì ta có:
n(n+1)+2 chia hết cho 5
Má n(n+1)suy ra n(n+1)+2 chẵn
Suy ra n(n+1)+2có tận cùng là 0
Suy ra n(n+1) có tận cùng là 8
Má n(n+1)lá tích 2 số liên tiếp nên k tìm được n
Giả thuyết trên k hợp lý
Vậy...................
TH1 : Nếu n = 3k (k thuộc Z)
Suy ra n* 2 + n + 2= 3k*2 + 3k + 2 không chia hết cho 3
TH2 : Nếu n = 3k + 1 (k thuộc Z)
Suy ra n* 2 + n + 2 = (3k + 1)*2 + 3k + 1 + 2
= ( 3k + 1) . (3k + 1) + 3k + 1 + 2
= 3k (3k + 1) + 3k + 1 + 3k + 1 + 2
= 9k*2 + 3k + 3k + 1 + 3k + 1 + 2
= 9k*2 + 9k + 4 không chia hết cho 3
TH2 : Nếu n = 3k + 2 (k thuộc Z)
Suy ra n*2 + n + 2 = (3k + 2)*2 + 3k + 2 + 2
= (3k + 2) . (3k + 2) + 3k + 2 + 2
= 3k(3k + 2) + 2 (3k + 2) + 3k + 2 + 2
= 9k*2 + 6k + 6k + 4 + 3k + 2 + 2
= 9k*2 + 15k + 8 không chia hết cho 3
Vậy ........................................................
Mk nhanh nhất k mk nha
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3)
=(n-3)(n^2-1)
=(n-3)(n-1)(n+1)
Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
=8(k-1)k(k+1)
vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ
Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
=n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120
Ta có: n3-n=n(n2-1)=n.(n-1).(n+1)
Vì đây là tích ba số tự nhiên liên tiếp nên nó chia hết cho 2 và 3 \(\Rightarrow\)n3-n sẽ chia hết cho 6
\(\Rightarrow\)n3-n+2 chia 6 dư 2
Vậy n3-n+2 không chia hết cho 6 với mọi số tự nhiên n