K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

Bn tham khảo câu hỏi này nhé :

Câu hỏi của zZz Phan Cả Phát zZz - Toán lớp 8 - Học toán với OnlineMath

15 tháng 1 2019

\(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)

\(\Leftrightarrow a^4+ab^3+a^3b+b^4\le2\left(a^4+b^4\right)\)

\(\Leftrightarrow ab^3+a^3b\le a^4+b^4\)

\(\Leftrightarrow a^4+b^4-ab^3-a^3b\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(luôn đúng)

Dấu "=" xảy ra khi \(a-b=0\Leftrightarrow a=b\)

31 tháng 3 2021

Đề phải là số thực không âm mới đúng

17 tháng 9 2017

Soeasy''ss :v

Ta có: BĐT đã cho ;v

\(\Leftrightarrow a^4+ab^3+ba^3+b^4\le2\left(a^4+b^4\right)\)

\(\Leftrightarrow0\le a^4+b^4-ab^3-ba^3\)

\(\Leftrightarrow0\le a^3\left(a-b\right)-b^3\left(a-b\right)\)

\(\Leftrightarrow0\le\left(a-b\right)^2\left(a^2+ab+b^2\right)\)(Luônđúng)

Vậy ta có đpcm

15 tháng 1 2019

biến đổi tương đương đi, nhân tung ngoặc ra

16 tháng 1 2019

\(\left(a+b\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\left(a^3+b^3\right)\)

\(\Leftrightarrow a^5+ab^4+a^4b+b^5\ge a^5+a^2b^3+a^3b^2+b^5\)

\(\Leftrightarrow ab^4+a^4b-a^2b^3-a^3b^2\ge0\)

\(\Leftrightarrow ab\left(a^3+b^3-ab^2-a^2b\right)\ge0\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b\ge0\)(Do ab > 0)

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)Luôn đúng do a,b dương

Dấu "='' khi a = b

31 tháng 8 2021

Tham Khao

a) Áp dụng BĐT AM-GM ta có:
(a + b) ≥ 2√ab
(b + c) ≥ 2√bc
(c + a) ≥ 2√ca
Vì a,b,c > 0 nên nhân vế với vế 3 BĐT trên ta được:
(a + b)(b + c)(c + a) ≥ 8√a^2b^2c^2 =8abc (đpcm)
Dấu = xảy ra <=> a=b=c

NV
15 tháng 3 2022

\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)

\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)

Cộng vế:

\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)

\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

14 tháng 3 2022

chết đăng nhầm sogy nha

1 tháng 1 2021

giả sử \(a\ge b\ge c\ge0\)

Ta có: \(a+\frac{b}{2}-\frac{a^2+ab+b^2}{a+b}=\frac{1}{2}\left(ab-b^2\right)\ge0\Rightarrow a+\frac{b}{2}\ge\frac{a^2+ab+b^2}{a+b}\)

\(b+\frac{a}{2}-\frac{a^2+ab+b^2}{a+b}=\frac{1}{2}\left(ab-a^2\right)\le0\Rightarrow b+\frac{a}{2}\le\frac{a^2+ab+b^2}{a+b}\)

Tương tự: \(b+\frac{c}{2}\ge\frac{b^2+bc+c^2}{b+c}\ge c+\frac{b}{2};a+\frac{c}{2}\ge\frac{a^2+ac+c^2}{a+c}\ge c+\frac{a}{2}\)

Lại có:+) \(\frac{a^3-b^3}{a+b}+\frac{b^3-c^3}{b+c}+\frac{c^3-a^3}{c+a}\)

\(=\left(a-b\right)\frac{a^2+ab+b^2}{a+b}+\left(b-c\right)\frac{b^2+bc+c^2}{b+c}-\left(a-c\right)\frac{a^2+ac+c^2}{a+c}\)

\(\ge\left(a-b\right)\left(b+\frac{a}{2}\right)+\left(b-c\right)\left(c+\frac{a}{2}\right)-\left(a-c\right)\left(a+\frac{c}{2}\right)\)

\(\ge\frac{-1}{4}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left(1\right)\)

+) \(\frac{a^3-b^3}{a+b}+\frac{b^3-c^3}{b+c}+\frac{c^3-a^3}{c+a}\)

\(=\left(a-b\right)\frac{a^2+ab+b^2}{a+b}+\left(b-c\right)\frac{b^2+bc+c^2}{b+c}-\left(a-c\right)\frac{a^2+ac+c^2}{a+c}\)

\(\le\left(a-b\right)\left(a+\frac{b}{2}\right)+\left(b-c\right)\left(b+\frac{c}{2}\right)-\left(a-c\right)\left(c+\frac{a}{2}\right)\)

\(\le\frac{1}{4}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left(2\right)\)

Từ 1,2 => đpcm

2 tháng 1 2021

BĐT đã cho tuong duong voi:

\(\left|\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right|\le\frac{1}{4}\left[\Sigma\left(a-b\right)^2\right]\)

Theo AM-GM ta có: \(\left(ab+bc+ca\right)\le\frac{9}{8}\cdot\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a+b+c}\)

Có: \(VT\le\frac{9}{8}\left|\frac{\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}{\left(a+b+c\right)}\right|=\frac{9\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}{8\left(a+b+c\right)}\)

Cần chứng minh: \(4\left(a+b+c\right)^2\left[\Sigma\left(a-b\right)^2\right]^2\ge9\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\)

Rõ ràng \(\Sigma\left(a-b\right)^2\ge3\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)

Cần cm: \(36\left(a+b+c\right)^2\sqrt[3]{\left(a-b\right)^4\left(b-c\right)^4\left(c-a\right)^4}\ge9\sqrt[3]{\left(a-b\right)^6\left(b-c\right)^6\left(c-a\right)^6}\)

Hay \(4\left(a+b+c\right)^2\ge\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)

Tiếp tục là điều hiển nhiên do \(VT\ge4\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]\)

\(=2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

\(\ge6\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\ge VP\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\\a-b=b-c=c-a\\a=b=c\end{cases}}\Leftrightarrow a=b=c.\)