K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

Vì p là số nguyên tố lớn hơn 3

=> P không chia hết cho 3

=>P^2 không chia hết cho 3

=>P^2 có dạng 3k+1

=>P^2+2012=3k+1+2012=3m+2013 chia hết cho 3 => hợp số

học tốt :)

15 tháng 1 2019

Đề bài: Cho P là số nguyên tố lớn hơn 3 chứng minh rằng : \(p^2+2012\) là hợp số 

Vì p là số nguyên tố lớn hơn 3 nên p viết được dưới dạng \(3k+1\)hoặc \(3k+2\)

- Nếu \(p=3k+1\) thì \(p^2+2012=\left(3k+1\right)^2+2012=3k\left(3k+1\right)+3k+1+2012=9k^2+3k+3k+2013=9k^2+6k+2013\)

Có \(\hept{\begin{cases}9k^2⋮3\\6k⋮3\\2013⋮3\end{cases}\Rightarrow9k^2+6k+2013⋮3}\)

\(\Rightarrow p^2+2012⋮3\)

\(\Rightarrow p^2+2012\) là hợp số.

- Nếu \(p=3k+1\) thì \(p^2+2012=\left(3k+1\right)^2+2012=3k\left(3k+1\right)+3k+1+2012=9k^2+3k+3k+2013=9k^2+6k+2013\)

Có \(\hept{\begin{cases}9k^2⋮3\\6k⋮3\\2013⋮3\end{cases}\Rightarrow9k^2+6k+2013⋮3}\)

\(\Rightarrow p^2+2012⋮3\)

\(\Rightarrow p^2+2012\) là hợp số. (1)

- Nếu \(p=3k+2\) thì \(p^2+2012=\left(3k+2\right)^2+2012=3k\left(3k+2\right)+2\left(3k+2\right)+2012=9k^2+6k+6k+4+2012=9k^2+12k+2016\)

Có \(\hept{\begin{cases}9k^2⋮3\\12k⋮3\\2016⋮3\end{cases}\Rightarrow9k^2+6k+2016⋮3}\)

\(\Rightarrow p^2+2012⋮3\)

\(\Rightarrow p^2+2012\) là hợp số. (2)

Từ (1) và (2) suy ra 

\(p^2+2012\) là hợp số. 

Vây...

19 tháng 8 2016

lớp mấy mà không biết làm hả

19 tháng 8 2016

năm nay lên lớp 6

24 tháng 4 2016

với n>2 => (n-1)(n+1) <>0
vì (n-1)*n*(n+1) luôn chia hết cho 3 (3 số tự nhiên liên tiếp)
n không chia hết cho 3 => (n-1) hoặc (n+1) phải chia hết cho 3
=> n^2-1=(n-1)(n+1) phải chia hết cho 3=>dpcm

24 tháng 4 2016

với n>2 => (n-1)(n+1) <>0
vì (n-1)*n*(n+1) luôn chia hết cho 3 (3 số tự nhiên liên tiếp)
n không chia hết cho 3 => (n-1) hoặc (n+1) phải chia hết cho 3
=> n^2-1=(n-1)(n+1) phải chia hết cho 3=>dpcm

3 tháng 1 2016

p nguyên tố p>3

=>p có dạng 6m+1 và 6m-1

Thay vào p^2+2012 chứng minh nó là hợp số nữa là xong bạn à.

Nếu thấy bài làm của mình đúng thì tick nha bạn.Cảm ơn bạn nhiều.

3 tháng 1 2016

bn viết cả bài làm cho mình đc ko

 

17 tháng 4 2016

câu 1 bạn xét p là 2 số có 2 dạng là 3k+1 và 3k+2

câu 2 xét số đó là có dạng ab và xét từng tr hợp số chẵn lẻ

mik k có thời gian nên k vt đc cho bạn nên bạn tự lm nha

hộ