cho P là số tự nhiên lớn hơn 3 chứng minh rằng : P^2 + 2012 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với n>2 => (n-1)(n+1) <>0
vì (n-1)*n*(n+1) luôn chia hết cho 3 (3 số tự nhiên liên tiếp)
n không chia hết cho 3 => (n-1) hoặc (n+1) phải chia hết cho 3
=> n^2-1=(n-1)(n+1) phải chia hết cho 3=>dpcm
với n>2 => (n-1)(n+1) <>0
vì (n-1)*n*(n+1) luôn chia hết cho 3 (3 số tự nhiên liên tiếp)
n không chia hết cho 3 => (n-1) hoặc (n+1) phải chia hết cho 3
=> n^2-1=(n-1)(n+1) phải chia hết cho 3=>dpcm
p nguyên tố p>3
=>p có dạng 6m+1 và 6m-1
Thay vào p^2+2012 chứng minh nó là hợp số nữa là xong bạn à.
Nếu thấy bài làm của mình đúng thì tick nha bạn.Cảm ơn bạn nhiều.
câu 1 bạn xét p là 2 số có 2 dạng là 3k+1 và 3k+2
câu 2 xét số đó là có dạng ab và xét từng tr hợp số chẵn lẻ
mik k có thời gian nên k vt đc cho bạn nên bạn tự lm nha
hộ
Vì p là số nguyên tố lớn hơn 3
=> P không chia hết cho 3
=>P^2 không chia hết cho 3
=>P^2 có dạng 3k+1
=>P^2+2012=3k+1+2012=3m+2013 chia hết cho 3 => hợp số
học tốt :)
Đề bài: Cho P là số nguyên tố lớn hơn 3 chứng minh rằng : \(p^2+2012\) là hợp số
Vì p là số nguyên tố lớn hơn 3 nên p viết được dưới dạng \(3k+1\)hoặc \(3k+2\)
- Nếu \(p=3k+1\) thì \(p^2+2012=\left(3k+1\right)^2+2012=3k\left(3k+1\right)+3k+1+2012=9k^2+3k+3k+2013=9k^2+6k+2013\)
Có \(\hept{\begin{cases}9k^2⋮3\\6k⋮3\\2013⋮3\end{cases}\Rightarrow9k^2+6k+2013⋮3}\)
\(\Rightarrow p^2+2012⋮3\)
\(\Rightarrow p^2+2012\) là hợp số.
- Nếu \(p=3k+1\) thì \(p^2+2012=\left(3k+1\right)^2+2012=3k\left(3k+1\right)+3k+1+2012=9k^2+3k+3k+2013=9k^2+6k+2013\)
Có \(\hept{\begin{cases}9k^2⋮3\\6k⋮3\\2013⋮3\end{cases}\Rightarrow9k^2+6k+2013⋮3}\)
\(\Rightarrow p^2+2012⋮3\)
\(\Rightarrow p^2+2012\) là hợp số. (1)
- Nếu \(p=3k+2\) thì \(p^2+2012=\left(3k+2\right)^2+2012=3k\left(3k+2\right)+2\left(3k+2\right)+2012=9k^2+6k+6k+4+2012=9k^2+12k+2016\)
Có \(\hept{\begin{cases}9k^2⋮3\\12k⋮3\\2016⋮3\end{cases}\Rightarrow9k^2+6k+2016⋮3}\)
\(\Rightarrow p^2+2012⋮3\)
\(\Rightarrow p^2+2012\) là hợp số. (2)
Từ (1) và (2) suy ra
\(p^2+2012\) là hợp số.
Vây...