K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

1.

Ta có:

\(xy\left(x^2+y^2\right)=\dfrac{1}{2}\cdot2xy\left(x^2+y^2\right)\le\dfrac{1}{2}\cdot\dfrac{\left(x^2+2xy+y^2\right)^2}{4}=\dfrac{1}{2}\cdot\dfrac{\left(x+y\right)^4}{4}=\dfrac{1}{2}\cdot\dfrac{2^4}{4}=2\)

\(xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2^2}{4}=1\)

\(\Rightarrow VT\le2\cdot1=2\)

Dấu "=" xảy ra khi x = y = 1

15 tháng 1 2019

Bn ơi đề là \(x^2y^2\left(x^2+y^2\right)\le2\)

16 tháng 5 2017

Đặt: y + z = a thì ta có

\(x\le2a\)

Từ đề bài thì ta có thể suy ra

\(A\le\frac{2x}{a^2}-\frac{1}{\left(x+a\right)^3}\)

\(\le\frac{4}{a}-\frac{1}{27a^3}=\frac{108a^2-1}{27a^3}\)

 \(=16-\frac{\left(6a-1\right)^2\left(12a+1\right)}{27a^3}\le16\)

 Vậy GTLN là \(A=16\). Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=z=\frac{1}{12}\end{cases}}\) 

16 tháng 5 2017

Làm sao để tách được bởi vì làm sao dự đoán dượcđiểm rơi?

4 tháng 4 2018

Áp dụng BĐT Am-Gm ta có:

\(\left[xy\left(x+y\right)\right]\left[xy\left(x+y\right)\right]\left[xy\left(x+y\right)\right]\left(x^3+y^3\right)\le\left[\dfrac{3xy\left(x+y\right)+x^3+y^3}{4}\right]^4\)( dạng \(abcd\le\left(\dfrac{a+b+c+d}{4}\right)^4\))

\(\Leftrightarrow\left(x+y\right)^3.x^3y^3\left(x^3+y^3\right)\le\dfrac{\left(x+y\right)^{12}}{4^4}\)

\(\Leftrightarrow x^3y^3\left(x^3+y^3\right)\le\dfrac{\left(x+y\right)^9}{4^4}=\dfrac{2^9}{2^8}=2\)

Dấu = xảy ra khi x=y=1

27 tháng 3 2019

Ta có: \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c.1+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{c\left(b+c\right)+a\left(b+c\right)}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\frac{a}{a+c}.\frac{b}{b+c}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)( bđt Cosi)

Tương tự như trên: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right);\sqrt{\frac{ac}{b+ac}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{c}{b+c}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}\right)=\frac{3}{2}\)

"=" Xảy ra khi và chỉ khi:

\(\frac{a}{a+c}=\frac{b}{b+c}\Leftrightarrow a\left(b+c\right)=b\left(a+c\right)\Leftrightarrow a=b\)

\(\frac{a}{a+b}=\frac{c}{b+c}\Leftrightarrow a=c\)

\(\frac{c}{a+c}=\frac{b}{a+b}\Leftrightarrow b=c\)

\(a+b+c=1\)

Từ các điều trên ta có đc: \(a=b=c=\frac{1}{3}\)

Vậy GTLN của P=3/2 khi và chỉ khi a=b=c=1/3

NV
1 tháng 3 2021

Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)

\(\Leftrightarrow x^2+2\le3x\)

Hoàn toàn tương tự ta có \(y^2+2\le3y\)

Do đó: \(P\ge\dfrac{x+2y}{3x+3y+3}+\dfrac{2x+y}{3x+3y+3}+\dfrac{1}{4\left(x+y-1\right)}\)

\(P\ge\dfrac{x+y}{x+y+1}+\dfrac{1}{4\left(x+y-1\right)}\)

Đặt \(a=x+y-1\Rightarrow1\le a\le3\)

\(\Rightarrow P\ge f\left(a\right)=\dfrac{a+1}{a+2}+\dfrac{1}{4a}\)

\(f'\left(a\right)=\dfrac{3a^2-4a-4}{4a^2\left(a+2\right)^2}=\dfrac{\left(a-2\right)\left(3a+2\right)}{4a^2\left(a+2\right)^2}=0\Rightarrow a=2\)

\(f\left(1\right)=\dfrac{11}{12}\) ; \(f\left(2\right)=\dfrac{7}{8}\) ; \(f\left(3\right)=\dfrac{53}{60}\)

\(\Rightarrow f\left(a\right)\ge\dfrac{7}{8}\Rightarrow P_{min}=\dfrac{7}{8}\) khi \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

10 tháng 3 2021

Đặt xy = a.

Ta có \(xy.\left(x^2+y^2\right)=xy.\left[\left(x+y\right)^2-2xy\right]=t\left(4-2t\right)=4t-2t^2=2-2\left(t-1\right)^2\le2\).

Đẳng thức xảy ra khi x = y = 1.