Tìm nghiệm nguyên dương của phương trình 2x+2y+2z=1984 va x<y<z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi
\(\Leftrightarrow\left(2x^2-3\right)y=x^2+1\)
\(\Leftrightarrow y=\dfrac{x^2+1}{2x^2-3}\)
\(y\in Z\Rightarrow2y\in Z\Rightarrow\dfrac{2x^2+2}{2x^2-3}\in Z\Rightarrow1+\dfrac{5}{2x^2-3}\in Z\)
\(\Rightarrow2x^2-3=Ư\left(5\right)=\left\{-1;1;5\right\}\)
\(\Rightarrow x^2=\left\{1;2;4\right\}\Rightarrow x=\left\{1;2\right\}\)
- Với \(x=1\Rightarrow y=-2< 0\left(loại\right)\)
- Với \(x=2\Rightarrow y=1\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)
\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)
\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)
\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)
\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương
\(ĐKXĐ:x;y\ge\frac{1}{2}\)
Chia cả 2 vế của pt cho x ; y ta được
\(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}=2\)
Dễ dàng c/m được \(\hept{\begin{cases}\sqrt{2y-1}\le y\\\sqrt{2x-1}\le x\end{cases}\Rightarrow VT\le1+1=2}\)
Dấu "=" xảy ra <=>. x= y = 1
Vậy x = y = 1
Rất easy! Dùng Cô si ngược đê!
ĐKXĐ: \(x,y\ge\frac{1}{2}\)
Theo Cô si (ngược),ta có:
\(VT=x\sqrt{1\left(2y-1\right)}+y\sqrt{1\left(2x-1\right)}\)
\(VT\le x.\frac{2y-1+1}{2}+y.\frac{2x-1+1}{2}\)
\(=xy+yx=2xy=VP\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=2y-1=1\Leftrightarrow2x=2y=2\Leftrightarrow x=y=1\)
Ta có: \(x\left(x+2y\right)^3-y\left(y+2x\right)^3=27\)
\(\Leftrightarrow x\left(x^3+6x^2y+12xy^2+8y^3\right)-y\left(y^3+6xy^2+12x^2y+8x^3\right)=27\)
\(\Leftrightarrow x^4+6x^3y+12x^2y^2+8xy^3-y^4-6xy^3-12x^2y^2-8x^3y=27\)
\(\Leftrightarrow\left(x^4-y^4\right)-2x^3y+2xy^3=27\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)-2xy\left(x^2-y^2\right)=27\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2-2xy+y^2\right)=27\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^3=27\)
Vì x , y > 0 => \(x+y>0\Rightarrow\left(x-y\right)^3>0\Rightarrow x>y\)
Khi đó: \(\left(x-y\right)^3\in\left\{1;8;27\right\}\Rightarrow x-y\in\left\{1;2;3\right\}\)
Nếu \(\left(x-y\right)^3=1\Rightarrow\hept{\begin{cases}x-y=1\\x+y=27\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=13\end{cases}}\)
Nếu \(\left(x-y\right)^3=8\Rightarrow\hept{\begin{cases}x-y=2\\x+y=\frac{27}{8}\end{cases}\left(ktm\right)}\)
Nếu \(\left(x-y\right)^3=27\Rightarrow\hept{\begin{cases}x-y=3\\x+y=1\end{cases}}\left(ktm\right)\)
Vậy x = 14 , y = 13
\(2^x\left(1+2^{y-x}+2^{z-x}\right)=2^6.31\)
\(\Rightarrow\left\{{}\begin{matrix}2^x=2^6\\1+2^{y-x}+2^{z-x}=31\end{matrix}\right.\) \(\Rightarrow x=6\)
\(\Rightarrow2^y+2^z=1984-2^6=1920\)
\(\Rightarrow2^y\left(1+2^{z-y}\right)=2^7.15\)
\(\Rightarrow\left\{{}\begin{matrix}2^y=2^7\\1+2^{z-y}=15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=7\\2^{z-y}=14\end{matrix}\right.\)
\(\Rightarrow2^{z-7}=14\Rightarrow\) không tồn tại z nguyên dương thỏa mãn
Vậy phương trình không có nghiệm nguyên dương phù hợp