K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

Sửa đề : I là trung điểm AO

O A B x y I M E F

a,Xét tứ giác AEIM có ^EAI + ^EMI = 90o

=> Tứ giác AEIM nội tiếp 

Tương tự tứ giác MIBF nội tiếp

b,Vì tứ giác AEIM nội tiếp

=> ^MEI = ^MAI

Tương tự ^MFI = ^MBI

Vì M thuộc (O) đường kính AB

=> ^AMB = 90o

=> ^MAI + ^MBI = 90o

=> ^MEI + ^MFI = 90o

=> ^EIF = 90o

c, Xét \(\Delta\)AEI và \(\Delta\)BIF có

^EAI = ^FBI ( = 90o )

^AEI = ^BIF (Cùng phụ ^EIA)

\(\Rightarrow\Delta AEI\approx\Delta BIF\left(g.g\right)\)

=> AE . BF = AI . BI

 Vì I là trung điểm AO

=> \(AI=\frac{AO}{2}=\frac{R}{2}\)

=> \(BI=AB-AI=2R-\frac{R}{2}=\frac{3R}{2}\)

\(\Rightarrow AE.BF=AI.BI=\frac{R}{2}.\frac{3R}{2}=\frac{3R^2}{4}\)

d,(Mấy cái lặt vặt tính cạnh theo R mình không làm nữa nhé , bạn tự hiểu nha)

Có \(S_{EIF}=S_{AEBF}-S_{AEI}-S_{BIF}\)

             \(=\frac{\left(AE+BF\right).AB}{2}-\frac{AE.AI}{2}-\frac{BI.BF}{2}\)

             \(=\frac{\left(AE+BF\right).2R}{2}-\frac{AE}{2}.\frac{R}{2}-\frac{BF}{2}.\frac{3R}{2}\)

            \(=\left(AE+BF\right).R-\frac{AE.R}{4}-\frac{3BF.R}{4}\)

            \(=AE.R-\frac{AE.R}{4}+BF.R-\frac{3BF.R}{4}\)

            \(=\frac{3AE.R}{4}+\frac{BF.R}{4}\)

            \(\ge2\sqrt{\frac{3AE.R.BF.R}{4.4}}\)

           \(=2\sqrt{\frac{3R^2.AE.BF}{16}}\)

            \(=2\sqrt{\frac{3R^2.\frac{3R^2}{4}}{16}}\)

              \(=\frac{3R^2}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{3AE.R}{4}=\frac{BF.R}{4}\)

                        \(\Leftrightarrow3AE=BF\)

Thay vào \(AE.BF=\frac{3R^2}{4}\)

\(\Leftrightarrow AE.3AE=\frac{3R^2}{4}\)

\(\Leftrightarrow AE=\frac{R}{2}\)

\(\Leftrightarrow BF=\frac{3R}{2}\)

Vậy .,..........

15 tháng 10 2021

a, \(\widehat{CAI}=\widehat{CMI}=90^0\) nên ACMI nt

\(\widehat{AMB}=\widehat{EIF}=90^0\) (góc nt chắn nửa đg tròn) nên MEIF nt

b, Vì ACMI nt nên \(\widehat{MAB}=\widehat{MCI}\)

Vì MEIF nt nên \(\widehat{MEF}=\widehat{MIF}\)

Mà \(\widehat{MCI}=\widehat{MIF}\) (cùng phụ \(\widehat{MIC}\)) nên \(\widehat{MAB}=\widehat{MEF}\)

Mà 2 góc này ở vị trí ĐV nên EF//AB

c, Ta có \(\widehat{MCI}=\widehat{MIF}\)

\(\Rightarrow\widehat{MCI}+\widehat{MDI}=\widehat{MIF}+\widehat{MDI}\)

Mà tg CID vuông tại I nên \(\widehat{MCI}+\widehat{MDI}=\widehat{MIF}+\widehat{MDI}=90^0\)

Do đó tg MID vuông tại M

\(\Rightarrow\widehat{DMI}+\widehat{CMI}=90^0+90^0=180^0\)

Suy ra đpcm

Chờ t câu d

15 tháng 10 2021

d, Gọi J,K ll là tâm đg tròn ngoại tiếp tg CME và tg MFD

Gọi G là trung điểm MF

\(\Rightarrow\widehat{GKM}=\widehat{MDF}\left(=\dfrac{1}{2}sđ\stackrel\frown{MF}\right)\)

Mà \(\widehat{GKM}+\widehat{KMG}=90^0\) nên \(\widehat{MDF}+\widehat{KMG}=90^0\left(1\right)\)

Vì MIBD nt nên \(\widehat{MBI}=\widehat{MDF}\)

Mà \(\widehat{OMB}=\widehat{OBM}\) nên \(\widehat{OMB}=\widehat{MDF}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{OMB}+\widehat{GKM}=90^0\)

\(\Rightarrow KM\perp OM\) hay OM là tt của đg tròn ngoại tiếp tg MFD

Cmtt \(\Rightarrow JM\perp OM\) hay OM là tt đg tròn ngoại tiếp tg CME

Từ đó suy ra đpcm

27 tháng 10 2021

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CM=CA

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: DM=DB

Ta có: CM+MD=CD

nên CD=CA+DB

27 tháng 10 2021

mình cần phần d, f

13 tháng 12 2022

a: Xét tứ giác CAOM có góc CAO+góc CMO=180 độ

nên CAOM là tứ giác nội tiếp

Tâm là trung điểm của OC

b: Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

AC+BD=CM+MD=CD

19 tháng 12 2020

a) Gọi I là tiếp điểm của tiếp tuyến MN với đường tròn (O). Nối  OI.

Ta có:  ˆAOI+ˆBOI=180∘AOI^+BOI^=180∘ (hai góc kề bù)

              OM là tia phân giác cảu góc AOI (tính chất hai tiếp tuyến cắt nhau)

 

Quảng cáo

 

              ON là tia phân giác của góc BOI (tính chất hai tiếp tuyến cắt nhau)

Suy ra: OM ⊥ ON (tính chất hai góc kề bù)

Vậy ˆMON=90∘MON^=90∘

b) Ta có:  MA = MI (tính chất hai tiếp tuyến cắt nhau)

NB = NI (tính chất hai tiếp tuyến cắt nhau)

Mà:        MN = MI + IN

Suy ra:   MN = AM + BN

c) Tam giác OMN vuông tại O có OI ⊥ MN (tính chất tiếp tuyến) theo hệ thức lượng trong tam giác vuông, ta có:

OI2=MI.NIOI2=MI.NI

Mà:                  MI = MA, NI = NB (chứng minh trên)

Suy ra:             AM.BN=OI2=R2AM.BN=OI2=R2.

good luck!