K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

Do vai trò của x,y  bình đẳng như nhau,giả sử \(x\ge y\),khi đó:

\(\frac{x+y}{x^2+y^2}=\frac{7}{25}\)

\(\Rightarrow7\left(x^2+y^2\right)=25\left(x+y\right)\)

\(\Rightarrow7x^2+7y^2=25x+25y\)

\(\Rightarrow7x^2-25x=25y-7y^2\)

\(\Rightarrow x\left(7x-25\right)=y\left(25-7y\right)\)

\(\Rightarrow7x-25\)và \(25-7y\)cùng dấu vì \(x,y\inℕ\)

Nếu \(\hept{\begin{cases}7x+25< 0\\25-7y< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< 4\\y< 4\end{cases}}\)(trái với giả sử)

Nếu \(\hept{\begin{cases}7x-25\ge0\\25-7y\ge0\end{cases}}\)

\(\Rightarrow x\ge4,y< 4\)

Thử y là các số tự nhiên từ 0 đến 3 ta được \(x=4,y=3\)

Vậy các cặp số (x,y) cần tìm là:\(\left(3;4\right)\)và các hoán vị của chúng

17 tháng 8 2023

Ta thấy \(2x^2< 4\) \(\Leftrightarrow x^2< 2\) \(\Leftrightarrow x^2=1\) (do \(x\ne0\))

Thế vào pt đề bài, ta có \(3+\dfrac{y^2}{4}=4\) 

\(\Leftrightarrow\dfrac{y^2}{4}=1\)

\(\Leftrightarrow y^2=4\)

\(\Leftrightarrow y=\pm2\)

Vậy, các cặp số (x; y) thỏa ycbt là \(\left(1;2\right);\left(-1;-2\right);\left(1;-2\right);\left(-1;2\right)\)

 

17 tháng 8 2023

a

13 tháng 3 2021

\(\dfrac{x}{7}+\dfrac{y}{41}+\dfrac{z}{49}=\dfrac{1000}{2009}\)

\(\Leftrightarrow\dfrac{287x+49y+41z}{2009}=\dfrac{1000}{2009}\)

\(\Leftrightarrow287x+49y+41z=1000\)

\(\Leftrightarrow41z=1000-287x-49y\le1000-287-49=664\) do \(x,y\) nguyên dương. (1)

Mặt khác ta cũng có \(1000\equiv6\left(mod7\right);287\equiv0\left(mod7\right);49\equiv0\left(mod7\right)\)

\(\Rightarrow1000-287x-49y\equiv6\left(mod7\right)\)

Mà \(41\equiv6\left(mod7\right)\Rightarrow z\equiv1\left(mod7\right)\) (2)

Từ (1) suy ra \(1\le z\le\dfrac{664}{41}\le16\) (3)

Từ (2),(3) suy ra \(z\in\left\{8;15\right\}\)

+) \(z=8\Leftrightarrow287x+49y=672\)

\(\Leftrightarrow41x+7y=96\)

Bằng phép thử ta nhận nghiệm \(\left(x;y\right)=\left(2;2\right)\)

+) \(z=15\Leftrightarrow287x+49y=385\)

\(\Leftrightarrow41x+7y=55\)

Bằng phép thử ta nhận nghiệm \(\left(x;y\right)=\left(1;2\right)\)

Vậy tập nghiệm nguyên dương của phương trình là \(\left(x;y;z\right)\in\left\{\left(2;2;8\right);\left(1;2;15\right)\right\}\)