Tìm giá trị nhỏ nhất
A= (x2-2x+2007)/2007x2
B= x / (x+2004)2 (x>0)
M= (2x+1)/(x2+2)
_Thanks_
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{x^2-2x+2018}{x^2}\)
\(\Rightarrow B=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2018}{x^2}\)
\(\Rightarrow B=1-\left(\frac{2}{x}-\frac{2018}{x^2}\right)\)
\(B=\frac{x^2-2x+2018}{x ^2}\)
\(\Rightarrow\)\(Bx^2=x^2-2x+2018\)
\(\Rightarrow\)\(\left(B-1\right)x^2+2x-2018=0\)
Để phương trình có nghiệm thì:
\(\Delta'=1-\left(B-1\right).\left(-2018\right)\)\(\ge0\)
\(\Leftrightarrow\)\(2018B-2017\ge0\)
\(\Leftrightarrow\) \(B\ge\frac{2017}{2018}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{-1}{B-1}=\frac{-1}{\frac{2017}{2018}-1}=2018\)
Vậy \(Min\)\(B=\frac{2017}{2018}\) \(\Leftrightarrow\)\(x=2018\)
p/s: tham khảo
a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)
c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)
\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)
d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)
\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)
e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)
\(minE=-20\Leftrightarrow x=-3\)
f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)
\(A=x^2+3x+4=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)
Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)
Mấy câu còn lại làm tương tự nhé em^^
1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho
b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\); \(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)
=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m
2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb
áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\); \(x1.x2=-1\)
câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha
sửa đề rồi liên hệ để mình làm tiếp nha
Với x > 1 thì x -1 >0 .
Áp dụng bất đẳng thức Cô- si ta có:
f x = x 2 + 2 x - 1 = x - 1 2 + 2 x - 1 + 1 2 ≥ 2 . x - 1 2 . 2 x - 1 + 1 2 ⇔ f x ≥ 2 + 1 2 = 5 2
Giá trị nhỏ nhất của hàm số f x = x 2 + 2 x - 1 v ớ i x > 1 là 5 2
Dấu “=’ xảy ra khi x - 1 2 = 2 x - 1 ⇔ x - 1 2 = 4 ⇔ x = 3 > 1
Ta có \(\Delta'=1-m\ge0\)=>\(m\le1\)
Theo viet ta có
\(x_1+x_2=2\)
Vì x1 là nghiệm của phương trình
=> \(x_1^2=2x_1-m\)
Khi đó
\(P=\frac{m^3-m^2+4m}{2\left(x_1+x_2\right)+m^2-m}+m^2+1\)
\(=\frac{m\left(m^2-m+4\right)}{m^2-m+4}+m^2+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinP=\frac{3}{4}\)khi \(m=-\frac{1}{2}\)(thỏa mãn \(x\le1\))