K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

a) Ta có : M = 3 + 32  + 33 + ... + 3100

=> M = (3 + 32) + (33 + 34) + ... + (399 + 3100)

=> M = 12 + 32(3 + 32) + ... + 398(3 + 32)

=> M = 12 + 32.12 + ... + 398.12

=> M = 12(1 + 32 + ... + 398\(⋮\)12

Do 12 = 3 . 4 \(⋮\)4 => M \(⋮\)4

b) Ta có: 2m + 3 = 3

=> 2m = 3 - 3

=> 2m = 0

=> m = 0 : 2

=> m = 0

3 tháng 1 2019

\(M=3+3^2+3^3+...+3^{100}\)

\(M=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

\(M=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(M=4.\left(3+3^3+...+3^{99}\right)\)

\(\Rightarrow M⋮4\)

mà \(M⋮3\)

\(\Rightarrow M⋮12\)

3 tháng 1 2019

Đáp án M có chia hết cho 4 và M có chia cho 12

a) ta có m = 3 + 32+ 33+...+3100

              3M=3^2+3^3+3^4+....+3^101

               2M=3^101-3

             =>2M+3=3^101

                  2M+6=3^101+3

                   M+3=(3^101+3)/2

Tớ nghĩ có lẽ bạn chép sai đề

11 tháng 11 2018

1.

\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)

Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5

Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4

Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120

2.(Tương tự)

3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16

Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)

Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.

4.

Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128

Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)

Do đó tích chia hết cho 3*128=384

5.

\(m^3-m=m\left(m-1\right)\left(m+1\right)\)

Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

Nên \(m^3-m\)chia hết cho 2*3=6

15 tháng 7 2019

Trả lời

M=3+3^2+3^3+...+3^100

=(3+3^2)+(3^3+3^4)+...+(3^99+3^100)

=12+3^2.(3^2+3)+...+3^98(3+3^2)

=12+3^2.12+...+3^98.12

=12.(1+3^2+...+3^98) : 12 (: chia hết nha!)

Do 12=3.4:4=>M: 4

15 tháng 7 2019

a)\(M=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)=4\left(3+3^3+...+3^{99}\right)⋮4\)

\(M=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{98}\left(3+3^2\right)=12\left(1+3^2+...+3^{98}\right)⋮12\)

b)\(M=3+3^2+3^3+3^4+...+3^{100}\)

\(=>3M=3^2+3^3+3^4+3^5+...+3^{101}\)

\(=>3M-M=2M=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(=>2M=3^{101}-3\)

Mà \(2M+3=3^n\)nên \(3^{101}-3+3=3^n=>3^{101}=3^n=>n=101\)

Vậy n = 101 

11 tháng 2 2019

a , Ta có :

M = 3 + 32 + ... + 3100

   = 3 . ( 1 + 3 ) + ... + 399 . ( 1 + 3 )

   = 3 . 4 + ...... + 399 . 4

   = 4 . ( 3 + ... + 399 ) \(⋮\)4

 

11 tháng 2 2019

a , M = 3 + 32 + ... + 3100

        = 1 . ( 3 + 32 ) + ... + 398 . ( 3 + 32 )

        =  1 . 12 + ... + 398 . 12

        =  12 . ( 1 + ... + 398 ) \(⋮\)12