Chứng minh :2n+1+1 chia hết cho 6
Cách 1:Chứng minh bằng phương pháp quy nạp
Cách 2:Chứng minh bằng bài toán phụ(a,b,m thuộc N, m lẻ)
Nhanh , mình cần gấp rùi mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a và 2a+1 là SCP
đặt \(a+1=m^2;2a+1=n^2\left(n,m\in N\right)\)
vì 2a+1 là số lẻ => n lẻ
=> 2a=\(n^2-1=\left(n-1\right)\left(n+1\right)\)
vì n lẻ => (n-1(n+1) là h 2 số chẵn liên tiếp => \(\left(n-1\right)\left(n+1\right)⋮8\Rightarrow2a⋮8\Rightarrow a⋮4\)
=> a chẵn => a+1 lẻ => m lẻ
mà a=\(m^2-1=\left(m+1\right)\left(m-1\right)\) là tích 2 số chắn liên tiếp => \(a⋮8\) (1)
mặt khác ta có
\(m^2\equiv1;0\left(mod3\right)\)
\(n^2\equiv0;1\left(mod3\right)\)
=> \(m^2+n^2\equiv0;1;2\left(mod3\right)\)
mà \(m^2+n^2=3a+2\equiv2\left(mod3\right)\)
\(\Rightarrow\hept{\begin{cases}m^2\equiv1\left(mod3\right)\\n^2\equiv1\left(mod3\right)\end{cases}}\)
=> \(m^2-1⋮3\Rightarrow a⋮3\) (2)
từ (1) ,(2) => \(a⋮24\) (ĐPCM)
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp chia hết cho 3
tick minh nha
a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1
Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.
Vậy n chia 8 dư 1.
b) Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
B1 a, Có n lẻ nên n = 2k+1(k E N)
Khi đó: n^2 + 7 = (2k+1)^2 +7
= 4k^2 + 4k + 8
= 4k(k+1) +8
Ta thấy k và k+1 là 2 số tự nhiên liên tiếp nên có ít nhất 1 số chia hết cho 2
=> k(k+1) chia hết cho 2 <=> 4k(k+1) chia hết cho 8
Mà 8 chia hết cho 8 <=> n^2 + 7 chia hết cho 8
Đặt \(A=6^{2n+1}+5^{n+2}\)
Với n=0
=>\(A\left(0\right)=6^{2.0+1}+5^{0+2}=6+5^2=31\) chia hết cho 31
Giả sử n=k thì A sẽ chia hết cho 31
=>\(A\left(k\right)=6^{2k+1}+5^{k+2}\) chia hết cho 31
Chứng minh n=k+1 cũng chia hết cho 31 hay \(A\left(k+1\right)=6^{2\left(k+1\right)+1}+5^{\left(k+1\right)+2}\) chia hết cho 31
thật vậy
\(A\left(k+1\right)=6^{2k+3}+5^{k+3}=6^{2k+1}.36+5^{k+2}.5\)
\(=5\left(6^{2k+1}+5^{k+2}\right)+3.6^{2k+1}\)
Theo giả thiết ta có
\(6^{2k+1}+5^{k+2}\) chia hết cho 31
=>\(5\left(6^{2k+1}+5^{k+2}\right)\) chia hết cho 31
mà\(31.6^{2k+1}\) chia hết cho 31
=>\(5\left(6^{2k+1}+5^{k+2}\right)+31.6^{2k+1}\) chia hết cho 31
Hay \(A\left(k+1\right)\) chia hết cho 31
Vậy \(^{6^{2n+1}+5^{n+2}}\) chia hết cho 31