K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2022

Phương trình hoành độ giao điểm là:

x^2-2mx+2m-5=0

Δ=(-2m)^2-4(2m-5)

=4m^2-8m+20

=4m^2-8m+4+16

=(2m-2)^2+16>=16>0 với mọi m

=>(P) luôn cắt (d) tại hai điểm phân biệt

\(x_1^2+x_2^2=34\)

=>(x1+x2)^2-2x1x2=34

=>\(\left(2m\right)^2-2\left(2m-5\right)=34\)

=>4m^2-4m+10-34=0

=>4m^2-4m-24=0

=>m^2-m-6=0

=>(m-3)(m+2)=0

=>m=3 hoặc m=-2

30 tháng 3 2022

undefined

30 tháng 3 2022

Mình tưởng b là -2(m+1) nên b'=-(m+1) vì b=2b' chỗ đen-ta ấy

Phương trình hoành độ giao điểm là:

\(x^2-mx+2m-4=0\)

\(\Delta=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16=\left(m-4\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-4<>0

hay m<>4

Ta có: \(x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=m^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

PT hoành độ giao điểm:

$x^2-2mx-(2m+1)=0(*)$

Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$

$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$

$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$

Khi đó:

$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$

$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix} 0\leq m< 1\\ \sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)

Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)

9 tháng 6 2021

\(\left(d\right)\) cắt \(\left(P\right)\) tại 2 điểm phân biệt \(\Leftrightarrow\Delta>0\)

                                                   \(\Leftrightarrow\left(2m+5\right)^2+4\left(2m+6\right)>0\)

                                                   \(\Leftrightarrow4m^2+20m+25+8m+24>0\)

                                                   \(\Leftrightarrow\left(2m+7\right)^2>0\) (luôn đúng)

Viet \(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=-2m-6\end{matrix}\right.\)

\(\left|x_1\right|+\left|x_2\right|=7\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7^2\)

                       \(\Leftrightarrow\left(2m+5\right)^2=49\)

                       \(\Leftrightarrow\left[{}\begin{matrix}m=-6\\m=1\end{matrix}\right.\)                      

-Chúc bạn học tốt-

 

a: khi m=2 thì (d): y=4x-2^2+1=4x-3

PTHĐGĐ:

x^2-4x+3=0

=>x=1 hoặc x=3

Khi x=1 thì y=1

Khi x=3 thì y=9

b: PTHĐGĐ là;

x^2-2mx+m^2-1=0

Δ=(-2m)^2-4(m^2-1)=4>0

=>(P) luôn cắt (d) tại hai điểm phân biệt

2y1+4m*x2-2m^2-3<0

=>2(2mx1-m^2+1)+4m*x2-2m^2-3<0

=>4m*x1-2m^2+2+4m*x2-2m^2-3<0

=>-4m^2+4m*(x1+x2)-1<0

=>-4m^2+4m*(2m)-1<0

=>-4m^2+8m-1<0

=>\(\left[{}\begin{matrix}m< \dfrac{2-\sqrt{3}}{2}\\m>\dfrac{2+\sqrt{3}}{2}\end{matrix}\right.\)