K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2021

đó nha bn

3 tháng 5 2021

a,Xét tg DHB và tg DCA có: ^HDB=^CDA=90 độ, ^DBH=^DAC ( cùng phụ với hai góc bằng nhau BHD=^AHE)

Do đó: tg HDB đồng dạng tg DCA (g.g)

Suy ra: HD/DC=BD/DA-> bd*dc=dh*da

b, HD/HA=SBHC/SABC

HE/BE=SAHC/SABC

HF/CF=SHAB/SABC

HD/HA+HE/BE+HF/CF=SBHC/SABC+SAHC/SABC+SAHB/SABC=1

6 tháng 6 2019

A B C D E F H I N M T K O F

Ta có tứ giác AEDB nội tiếp (AB), tứ giác BFEC nội tiếp (BC) nên ^CID = ^CED = ^ABD = ^AEF = ^MEN

=> Tứ giác MINE nội tiếp => ^EMN = ^EIN = ^ECT => Tứ giác EMCT nội tiếp

Áp dụng hệ thức lượng trong đường tròn: NM.NT = NE.NC = NF.NK => Tứ giác MKTF nội tiếp

=> ^FKT = ^FMT = ^HMN. Cũng từ tứ giác MINE nội tiếp ta suy ra ^EMN = ^ECT = ^AFE

=> MN // AF. Mà AF vuông góc CH nên MN vuông góc CH

Kết hợp với ^HFC chắn nửa đường tròn (O) suy ra ^HMN = ^HCF (Cùng phụ ^MHC)

Do đó ^FKT = ^HCF = ^FKH. Vì H,T nằm cùng phía so với FK nên KT trùng KH

Vậy thì H,K,T thẳng hàng (đpcm).

Bạn kham khảo link này nhé.

Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath

a: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có

góc DCA chung

=>ΔCEB đồng dạng với ΔCDA
=>CE/CD=CB/CA

=>CE*CA=CD*CB; CE/CB=CD/CA

c: \(S_{ABC}=\dfrac{1}{2}\cdot8\cdot12=48\left(cm^2\right)\)

Xét ΔCED và ΔCBA có

CE/CB=CD/CA
góc C chung

=>ΔCED đồng dạng với ΔCBA

=>\(\dfrac{S_{CDE}}{S_{CBA}}=\left(\dfrac{DE}{AB}\right)^2=1\)

=>\(S_{CDE}=48\left(cm^2\right)\)