1, Cho tam giác ABC nội tiếp đường tròn O . Đường phân giác góc A cắt đường tròn ở P . Đường cao AH cắt BC ở H . Cmr
a/ OP // AH
b/ AP là pgiac ^OAH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét đường tròn (O;R) có \(\widehat{CAP}=\widehat{BAP}\) (do AP là phân giác \(\widehat{BAC}\))
=> \(\stackrel\frown{CP}=\stackrel\frown{BP}\) (hai góc nội tiếp bằng nhau chắc hai cung bằng nhau)
=> CP = BP (liên hệ giữa cung và dây)
Lại có OB = OC = R => OP là trung trực của BC hay OP ⊥ BC.
Mà AH ⊥ BC (gt) => OP // AH
b) (Chắc bài hỏi AP là phân giác góc OAH đúng không bạn)
Xét đương tròn (O;R) có OA = OP = R => ΔOAP cân tại O
=> \(\widehat{OAP}=\widehat{OPA}\)
Do OP // AH (cmt) => \(\widehat{HAP}=\widehat{OPA}\) (slt)
=> \(\widehat{OAP}=\widehat{HAP}\left(=\widehat{OPA}\right)\)
=> AP là phân giác \(\widehat{OAH}\)
a) Ta có AP là tia phân giác của \(\widehat{BAC}\)
=> \(\widehat{BAP}=\widehat{PAC}\)
=> \(\stackrel\frown{BP}=\stackrel\frown{PC}\) (2 góc nt bằng nhau chắn 2 cung bằng nhau)=> P nằm chính giữa \(\stackrel\frown{BC}\)
=> BP=PC
Ta có OB = OC = R
=> O thuộc đường trung trực của BC
Lại có BP = PC => P thuộc đường trung trực của BC
=> OP là đường trung trực của BC
=> OP vuông góc với BC (1)
Lại có AH là đường cao từ A của tam giác ABC
=> AH vuông góc với BC (2)
Từ 1 và 2 => OP //AH
b) Ta có OA = OP = R
=> \(\widehat{OAP}=\widehat{OPA}\) (2 góc ở đáy )
Mà \(\widehat{OPA}=\widehat{HAP}\) (do AH//OP)
=> \(\widehat{HAP}=\widehat{OAP}\), mà AP nằm giữa AH và AO
=> AP là tia phân giáccuar góc OAH
a, ABDC nội tiếp
=> ˆBAH = ˆBCD
ACED nội tiếp
=> OAC^ = CDE^
Lại có ΔDEA nội tiếp đường tròn đường kínhAE
=> DE ⊥ AD
mà AD ⊥ BC
=> DE // BC=>BCD^ =CDE^ ( so le trong)
=>BAH^ = OAC^
b, DE // BC=> BDEC là hình thang (*)
Lại có:
DBC^ = DAC^ ( BDAC nội tiếp) (1)
BCE^= EAB^ ( ABEC nội tiếp) (2)
Lại có: BAH^ = OAC^
=> BAH^ + HAO^ = OAC^ + ˆHAO
=> EAB^ = DAC^ (3)
Từ (1) (2) (3) => DBC^= BCE^ (**)
từ (*) và (**) => BCED là hình thang cân
NÊN AP LÀ P/G
Kéo dài AO cắt (O) tại D
C/m: tgiac ADC vuông tại D
góc ABH = góc ADC (cùng chắn cung AC)
góc ABH + BAH = góc ADC + góc DAC (= 900)
suy ra: góc BAH = góc DAC
mà góc BAP = góc CAP
suy ra: góc HAP = góc DAP
mà góc DAP = góc OPA
=> góc HAP = góc OPA
=> OP // AH
góc HAP = góc DAP (cmt)
=> AP là phân giác góc OAH
=> AP là phân giác