K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)

<=>   \(\left(3x-2\right)\left(x+1\right)^2.3^2.\left(3x+8\right)+144=0\)

<=>  \(\left(3x-2\right)\left(3x+3\right)^2\left(3x+8\right)+144=0\)   (*)

Đặt  \(3x+3=t\) Khi đó pt (*) trở thành: 

   \(\left(t-5\right)t^2\left(t+5\right)+144=0\)

<=>  \(t^4-25t^2+144=0\)

<=>  \(\left(t-4\right)\left(t-3\right)\left(t+3\right)\left(t+4\right)=0\)

đến đây bn tự giải tiếp nhé

13 tháng 1 2019

\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)

\(\Leftrightarrow\left[\left(3x-2\right)\left(3x+8\right)\right]\left[9\left(x+1\right)^2\right]=-16.9\)

\(\Leftrightarrow\left(9x^2+18x-16\right)\left(9x^2+18x+9\right)=-144\)

\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)-144=-144\)

\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)=0\)

\(\Leftrightarrow\left(9x^2+18x\right)\left(9x^2+18x-7\right)=0\)

\(\Leftrightarrow9x\left(x+2\right)\left(3x-1\right)\left(3x+7\right)=0\)

Tập nghiệm của pt là: \(S=\left\{0;-2;\frac{1}{3};\frac{-7}{3}\right\}\)

29 tháng 2 2020

\(\left(3x-2\right)\left(x-1\right)^2\left(3x+8\right)=-16\)

\(\Leftrightarrow\left[\left(3x-2\right)\left(3x+8\right)\right]\left[9\left(x+1\right)^2\right]=-16.9=-144\)

\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)-144=-144\)

\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)=0\)

\(\Leftrightarrow\left(9x^2+18x\right)\left(9x^2+18x-7\right)=0\)

\(\Leftrightarrow9x\left(x+2\right)\left(3x-1\right)\left(3x+7\right)=0\)

Tập nghiệm của phương trình là : \(S=\left\{0;-2;\frac{1}{3};\frac{-7}{3}\right\}\)

b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)

\(\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)

1: \(\Leftrightarrow6\left(3x-1\right)+3\left(6x-2\right)=4\left(1-3x\right)\)

=>18x-6+18x-6=4-12x

=>36x-12=4-12x

=>48x=16

hay x=1/3

2: \(\Leftrightarrow\left(2x-1\right)\left(2x-1+x-3\right)=0\)

=>(2x-1)(3x-4)=0

=>x=1/2 hoặc x=4/3

18 tháng 12 2020

ĐKXĐ: \(x\ge1\).

Phương trình đã cho tương đương:

\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)

\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).

Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).

Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).

Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).

Vậy...

 

 

 

18 tháng 12 2020

Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!

16 tháng 4 2021

a,\(\left|-5x\right|\)=3x-16

\(\Leftrightarrow\)\(\left[{}\begin{matrix}-5x=3x-16\\-5x=-3x+16\end{matrix}\right.\)            \(\Leftrightarrow\)\(\left[{}\begin{matrix}-8x=-16\\-2x=16\end{matrix}\right.\)                 \(\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

 

22 tháng 4 2017

Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

21 tháng 3 2021

a)(2x+1)(3x-2)=(5x-8)(2x+1)

⇔(2x+1)(3x-2)-(5x-8)(2x+1)=0

⇔(2x+1)(3x-2-5x+8)=0

⇔(2x+1)(-2x+6)=0

⇔2x+1=0 hoặc -2x+6=0

1.2x+1=0⇔2x=-1⇔x=-1/2

2.-2x+6=0⇔-2x=-6⇔x=3

phương trình có 2 nghiệm x=-1/2 và x=3

1 tháng 6 2023

\(\left|x\right|=x+1\)

Ta có : \(\left\{{}\begin{matrix}x\ge0\\x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x+1\\-x=x+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0=1\\-2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0=1\left(ktm\right)\\x=-\dfrac{1}{2}\left(tm\right)\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{1}{2}\right\}\)

__

\(\left|3x\right|=x-2\)

Ta có : \(\left\{{}\begin{matrix}3x\ge0\Leftrightarrow x\ge0\\3x< 0\Leftrightarrow x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=x-2\\-3x=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-2\\-4x=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\left(ktm\right)\)

Vâỵ phương trình vô nghiệm

__

\(\left|-2x\right|=3x-4\)

Ta có : \(\left\{{}\begin{matrix}-2x\ge0\Leftrightarrow x\ge0\\-2x< 0\Leftrightarrow x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=3x-4\\-\left(-2x\right)=3x-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-5x=-4\\2x=3x-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\-x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\left(tm\right)\\x=4\left(ktm\right)\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{4\right\}\)

 

11 tháng 9 2021

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$