cho ba điểm A,B,C phân biệt có tất cả bao nhiêu vectơ (khác vecto không có điểm đầu,điểm cuối là hai điểm cuối là hai điểm trong ba điểm A,B,C ?
A:3
B:8
C:10
D:6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 3 cách chọn điểm A
2 cách chọn điểm B
=> có 3.2=6 cách chọn vecto có điểm đầu và điểm cuối là 2 điểm trong 3 điểm pb A,B,C
Xét tập X = {A, B, C, D, E ; F}. Với mỗi cách chọn hai phần tử của tập X và sắp xếp theo một thứ tự ta được một vectơ thỏa mãn yêu cầu
Mỗi vectơ thỏa mãn yêu cầu tương ứng cho ta một chỉnh hợp chập 2 của 6 phần tử thuộc tập X.
Vậy số các vectơ thỏa mãn yêu cầu bằng số tất cả các chỉnh hợp chập 2 của 6, bằng
Chọn C.
Câu 5:
D. Các vector \(\overrightarrow{AB}, \overrightarrow{BA}, \overrightarrow{AC}, \overrightarrow{CA}, \overrightarrow{BC}, \overrightarrow{CB}\)
Chọn điểm AA là điểm đầu thì chọn điểm cuối có 44 lựa chọn do →AA=⃗0AA→=0→
Tương tự chọn điểm BB là điểm đầu có 4 lựa chọn điểm cuối , chọn điểm CC là điểm đầu có 44 lựa chọn điểm cuối, chọn điểm DD là điểm đầu thì có 44 lựa chọn ở điểm cuối.
Vậy số vector khác vector không có điểm đầu và điểm cuối là các điểm đó là 4+4+4+4+4=204+4+4+4+4=20 vector.
Chọn điểm AA là điểm đầu thì chọn điểm cuối có 44 lựa chọn do →AA=⃗0AA→=0→
Tương tự chọn điểm B là điểm đầu có 4 lựa chọn điểm cuối , chọn điểm C là điểm đầu có 4 lựa chọn điểm cuối, chọn điểm D là điểm đầu thì có 44 lựa chọn ở điểm cuối.
Vậy số vector khác vector không có điểm đầu và điểm cuối là các điểm đó là 4+4+4+4+4=20 vector.
Với hai điểm A, B phân biệt ta có được 2 vectơ có điểm đầu và điểm cuối là A hoặc B
Đáp án D
Phương pháp:
Sử dụng quy tắc nhân.
Cách giải:
Số cách chọn điểm đầu là 2018 cách.
Số cách chọn điểm cuối là 2017 cách (trừ vector không).
Vậy có 2018 × 2017 = 4070306 cách
Chọn D