Cho phân số C= x^2+2x-3 /x^2-1
a) Rút gọn C
b) Tính giá trị của C tại x=3
c) Tìm x khi C=4
d) Tìm x nguên để C có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
ĐKXĐ: \(x\ne1\)
\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)
\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)
\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)
\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)
a: ĐKXĐ: x<>1
Sửa đề: \(C=\dfrac{5x+1}{x^3-1}+\dfrac{2x-1}{x^2+x+1}+\dfrac{2}{x-1}\)
\(=\dfrac{5x+1+\left(2x-1\right)\left(x-1\right)+2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2x^2+7x+3+2x^2-2x-x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{4x^2+4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{4}{x-1}\)
b: |x|=4
=>x=4 hoặc x=-4
Khi x=4 thì \(C=\dfrac{4}{4-1}=\dfrac{4}{3}\)
Khi x=-4 thì \(C=\dfrac{4}{-4-1}=\dfrac{4}{-5}=\dfrac{-4}{5}\)
c: C>0
=>4/x-1>0
=>x-1>0
=>x>1
d: C nguyên
=>x-1 thuộc {1;-1;2;-2;4;-4}
=>x thuộc {2;0;3;-1;5;-3}
Trong xu thế hội nhập hiện nay, hợp tác quốc tế là vấn đề quan trọng và tất yếu của mỗi quốc gia, dân tộc trên thế giới. Trong những năm gần đây, Việt Nam đã và đang trở thành một trong những điển hình về hợp tác quốc tế
a, từ nhận định trên em hãy cho biết hợp tác là gì? cơ sở và nguyên tắc của đang và nhà nước ta?
b, nêu 1 số thành quả hợp tác giữa các nước ta và các nước trên thế giới? từ đó em hãy cho biết hộc sinh hiên nay cần phải làm gì để rèn luyện tinh thần hợp tác
a) ĐKXĐ: \(x\notin\left\{3;-3;-2\right\}\)
Ta có: \(P=\left(\dfrac{2x-1}{x+3}-\dfrac{x}{3-x}-\dfrac{3-10x}{x^2-9}\right):\dfrac{x+2}{x-3}\)
\(=\left(\dfrac{\left(2x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{3-10x}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{x+2}{x-3}\)
\(=\dfrac{2x^2-6x-x+3+x^2+3x-3+10x}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+2}{x-3}\)
\(=\dfrac{3x^2+6x}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+2}{x-3}\)
\(=\dfrac{3x\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{x+2}\)
\(=\dfrac{3x}{x+3}\)
b) Ta có: \(x^2-7x+12=0\)
\(\Leftrightarrow x^2-3x-4x+12=0\)
\(\Leftrightarrow x\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=4\left(nhận\right)\end{matrix}\right.\)
Thay x=4 vào biểu thức \(P=\dfrac{3x}{x+3}\), ta được:
\(P=\dfrac{3\cdot4}{4+3}=\dfrac{12}{7}\)
Vậy: Khi \(x^2-7x+12=0\) thì \(P=\dfrac{12}{7}\)
a) x ≠ -5.
b) Ta có P = ( x + 5 ) 2 x + 5 = x + 5
c) Ta có P = 1 Û x = -4 (TMĐK)
d) Ta có P = 0 Û x = -5 (loại). Do vậy x ∈ ∅ .
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>
a: \(C=\dfrac{5x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2x-1}{x^2+x+1}+\dfrac{2}{x-1}\)
\(=\dfrac{5x+1+2x^2-3x+1+2x^2+2x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{4x^2+4x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)
c: Để C>0 thì \(\dfrac{4x^2+4x+3}{\left(x-1\right)\left(x^2+x+1\right)}>0\)
=>x-1>0
hay x>1
\(a,P=\left(\dfrac{2x-1}{x+3}-\dfrac{x}{3-x}-\dfrac{3-10x}{x^2-9}\right):\dfrac{x+2}{x-3}\left(x\ne\pm3;x\ne-2\right)\\ P=\dfrac{2x^2-7x+3+x^2+3x-3+10x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{x+2}\\ P=\dfrac{3x^2+6x}{\left(x-3\right)\left(x+2\right)}=\dfrac{3x\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}=\dfrac{3x}{x-3}\\ b,x^2-7x+12=0\\ \Leftrightarrow\left(x-3\right)\left(x-4\right)=0\\ \Leftrightarrow x=4\left(x\ne3\right)\\ \Leftrightarrow A=\dfrac{3\cdot4}{4-3}=12\\ c,P=\dfrac{3\left(x-3\right)+9}{x-3}=3+\dfrac{9}{x-3}\in Z\\ \Leftrightarrow x-3\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\\ \Leftrightarrow x\in\left\{-6;0;2;4;6;12\right\}\)
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
Đk: \(x\ne\pm1\).
\(C=\frac{x^2+2x-3}{x^2-1}=\frac{x^2+3x-x-3}{x^2-x+x-1}=\frac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x+3}{x+1}\)
Tại \(x=3\): \(C=\frac{3+3}{3+1}=\frac{3}{2}\).
\(C=4\Rightarrow\frac{x+3}{x+1}=4\Rightarrow x+3=4\left(x+1\right)\Leftrightarrow x=-\frac{1}{3}\)(tm)
\(C=\frac{x+3}{x+1}=\frac{x+1+2}{x+1}=1+\frac{2}{x+1}\inℤ\Leftrightarrow\frac{2}{x+1}\inℤ\)mà \(x\)nguyên nên
\(x+1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\)
\(\Leftrightarrow x\in\left\{-3,-2,0,1\right\}\).