Cho tam giác ANC có AB=5cm, ÁC=9cm. Kẻ đường thẳng đ song song với BC cắt AB, ÁC thứ tự tại E, F. Xác định vị trí điểm E sao cho AE=CF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $EF$ song song với $BC$ nên áp dụng định lý Thales ta có:
\(\frac{AE}{AB}=\frac{AF}{AC}\Leftrightarrow \frac{AE}{5}=\frac{AF}{9}\)
\(\Leftrightarrow 9AE=5AF\)
Mà \(AF=AC-FC=9-FC\)
\(\Rightarrow 9AE=5(9-FC)\)
Khi \(AE=CF\Rightarrow 9AE=5(9-AE)\)
\(\Leftrightarrow 14AE=45\Leftrightarrow AE=\frac{45}{14}\) (cm) \((<5\) cm)
Vậy điểm E nằm trên đoạn thẳng $AB$ sao cho \(AE=\frac{45}{14}\) cm
Ta đặt: \(S_{BEMF}=S_1;S_{ABC}=S\)
Kẻ \(AK\perp BC\) ; \(AK\) cắt \(EM\left\{H\right\}\)
Ta có: \(S_1=EM.HK\)
\(\Leftrightarrow S=\dfrac{1}{2}BC.AK\)
\(\Leftrightarrow\dfrac{S_1}{S}=2\dfrac{EM}{BC}.\dfrac{KH}{AK}\)
Đặt \(MA=x;MC=y\) . Theo định lý Thales ta có:
\(\dfrac{EM}{BC}=\dfrac{x}{x+y};\dfrac{HK}{AK}=\dfrac{x}{x+y}\)
\(\Leftrightarrow\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\)
Áp dụng bất đẳng thức Cosi dạng \(\dfrac{ab}{\left(a+b\right)^2}\le\dfrac{1}{4}\) ta được:
\(\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\le\dfrac{1}{2}\) hay \(S_1\le\dfrac{1}{2}S\)
\(\Leftrightarrow MaxS_1=\dfrac{1}{2}S\)
\(\Leftrightarrow\) \(M\) là trung điểm của \(AC\)
ND//AB
=>CN/CA=CD/CB
=>CN=CD
=>ΔNCD đều
=>NC=ND=CD
DM//AC
=>BD/BC=BM/BA
=>BD=BM
góc B=60 độ
=>ΔBMD đều
=>BM=BD=MD
góc MDC=180-60=120 độ
góc BDN=180-60=120 độ
=>góc MDC=góc BDN
Xét ΔBDN và ΔMDC có
BD=MD
góc BDN=góc MDC
DN=DC
=>ΔBDN=ΔMDC
=>BN=MC
=>BI=IN=KM=KC
Xét ΔKCD và ΔIND có
KC=IN
góc KCD=góc IND
CD=ND
=>ΔKCD=ΔIND
=>KD=ID
ΔKCD=ΔIND
=>góc IDN=góc KDC
=>góc KDI=60 độ
=>ΔKID đều