Cho tam giác ABC vuông ở A. M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MD = MB. Chứng minh rằng:
a) CD \(\perp\) AC và BC > CD
b) \(\widehat{ABM}>\widehat{MBC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đạt ( Quỳnh ) tự vẽ hình nhé !
a) Vì M là trung điểm của Ac
\(\Rightarrow AM=MC=\frac{1}{2}AC\)
Xét \(\Delta ABM\) và \(\Delta CDM\) có :
\(AM=MC\)
\(\widehat{AMB}=\widehat{CMD}\left(đđ\right)\)
\(BM=DM\left(gt\right)\)
Suy ra : \(\Delta ABM=\Delta CDM\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{DCM}=90^o\)
\(\Rightarrow CD\perp AC\)
Vì \(\Delta ABC\) vuông tại A \(\Rightarrow\) BC là cạnh huyền của tam giác
\(\Rightarrow\) BC > AB
Mà \(AB=CD\left(\Delta ABM=\Delta CDM\right)\)
Suy ra : \(BC>CD\)
b ) Tam giác BCD có :
\(BC>CD\Rightarrow\widehat{CDM}>\widehat{CBD}\) ( góc đối diện với cạnh lớn hơn là góc lớn hơn )
Mà \(\widehat{CDM}=\widehat{ABM}\left(\Delta ABM=\Delta CDM\right)\)
Suy ra : \(\widehat{ABM}>\widehat{CBD}\) hay \(\widehat{ABM}>\widehat{MBC}\left(đpcm\right)\)
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB=CD và AB//CD
=>AC vuông góc CD
b: ABCD là hình bình hành
=>AD//BC và AD=BC
a: Xét tứ giác ABCD co
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB=CD và AB//CD
=>CD vuông góc AC
b: AB+BC=AB+AD>BD=2BM
c: góc ABM=góc CDB
mà góc CDB>góc CBM
nên góc ABM>góc CBM
a: AC=căn 5^2-3^2=4cm
b: Xét ΔMAB và ΔMCD có
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔMAB=ΔMCD
=>AB=CD
c: AB+BC=CD+BC>DB=2BM(ĐPCM)
A) Vì tam giác ABC vuông tại A nên ta có :
AB2+AC2=BC2AB2+AC2=BC2
⇔AC2=BC2−AB2⇔AC2=BC2−AB2
⇔AC2=52−32⇔AC2=52−32
⇔AC2=25−9⇔AC2=25−9
⇔AC2=16⇔AC2=16
⇔AC=4
a: Xét ΔABM và ΔCDM có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔABM=ΔCDM
b: ΔABM=ΔCDM
nên AB=CD và góc ABM=góc CDM
=>AB//CD
=>CE vuông góc với AC
=>AC vuông góc DE
a: Xét tứ giác ABCD có
m là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AD//BC
b: ABCD là hình bình hành
=>AB//CD
=>CD vuông góc AC
c: Xét tứ giác ABNC có
AB//NC
AC//BN
=>ABNC là hình bình hành
=>BN=AC; AB=NC
Xét ΔBAM vuông tại A và ΔNCM vuông tại C có
MA=MC
BA=CN
=>ΔBAM=ΔNCM
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
Do đó: ABCD là hình bình hành
=>CD//AB và CD=AB
=>CD vuông góc với CA
CD=AB
mà BC>AB
nên BC>CD
b: góc ABM=góc CDB
mà góc CDB>góc MBC
nên góc ABM>góc MBC