K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: MN=AH

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC=AH^2\)

1 tháng 3 2022

cảm ơn bạn nha còn c, d, e nữa:3

21 tháng 12 2017

a)  \(\Delta ABC\) có  MA = MB;  NA = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)MN // BC

\(\Rightarrow\)Tứ giác BMNC là hình thang

b)  \(\Delta ABC\)có  NA = NC;  QB = QC

\(\Rightarrow\)NQ // AB;   NQ = 1/2 AB

mà   MA = 1/2 AB

\(\Rightarrow\)NQ = MA

Tứ giác AMQN có   NQ // AM;   NQ = AM

\(\Rightarrow\)AMQN là hình bình hành

21 tháng 12 2017

c)  E là điểm đối xứng của H qua M

\(\Rightarrow\)ME = MH

Tứ giác AHBE  có  MA = MB (gt);  ME = MH (gt)

\(\Rightarrow\)AHBE là hình bình hành

mà  \(\widehat{AHB}\)= 900

\(\Rightarrow\)hình bình hành AHBE  là  hình  chữ nhật

a: Xét ΔAHC vuông tại H có sin C=AH/AC

=>AH/8=sin30=1/2

=>AH=4cm

HC=căn AC^2-AH^2=4*căn 3(cm)

b: ΔAHB vuông tại H có  HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF và ΔACB có

AE/AC=AF/AB

góc A chung

=>ΔAEF đồng dạng với ΔACB

=>góc AEF=góc ACB

a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

góc B chung

Do đó: ΔBHA\(\sim\)ΔBAC 

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

BH=AB2/BC=3,6(cm)

b: Xét ΔAHC vuông tại H có HN là đường cao

nên \(HN^2=AH\cdot CN\)

a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có

góc B chung

=>ΔBAH đồng dạng với ΔBCA

\(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)

HB=6^2/10=3,6cm

b: ΔHAC vuông tại H có HN vuông góc AC

nên HN^2=NA*NC