cho tam giác ABC có góc B bằng 90 độ,đường cao AH,BA=15cm,BC=20cm.Gọi K và I lần lượt là hình chiếu của H trên AB,BC
a)tính BH
b)tính \(\frac{AK}{AB}\)
c)gọi M là trung điểm của AC và N là giao điểm của BM và KI. chứng minh BM vuông góc vs KI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
Suy ra: MN=AH
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC=AH^2\)
a) \(\Delta ABC\) có MA = MB; NA = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)MN // BC
\(\Rightarrow\)Tứ giác BMNC là hình thang
b) \(\Delta ABC\)có NA = NC; QB = QC
\(\Rightarrow\)NQ // AB; NQ = 1/2 AB
mà MA = 1/2 AB
\(\Rightarrow\)NQ = MA
Tứ giác AMQN có NQ // AM; NQ = AM
\(\Rightarrow\)AMQN là hình bình hành
a: Xét ΔAHC vuông tại H có sin C=AH/AC
=>AH/8=sin30=1/2
=>AH=4cm
HC=căn AC^2-AH^2=4*căn 3(cm)
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
=>AE/AC=AF/AB
Xét ΔAEF và ΔACB có
AE/AC=AF/AB
góc A chung
=>ΔAEF đồng dạng với ΔACB
=>góc AEF=góc ACB
a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
góc B chung
Do đó: ΔBHA\(\sim\)ΔBAC
\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
BH=AB2/BC=3,6(cm)
b: Xét ΔAHC vuông tại H có HN là đường cao
nên \(HN^2=AH\cdot CN\)
a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng với ΔBCA
\(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
b: ΔHAC vuông tại H có HN vuông góc AC
nên HN^2=NA*NC