K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A D B C

Tam giác ABC cân tại A \(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{ABC}=\widehat{ABC}\left(1\right)\end{cases}}\)

A là trung điểm của BD => AB = AD mà AB = AC => AD = AC

=> Tam giác CAD cân tại A \(\Rightarrow\widehat{ADC}=\widehat{ACD}\left(2\right)\)

Từ \(\left(1\right)\)và  \(\left(2\right)\)\(\Rightarrow\widehat{ABC}+\widehat{ADC}=\widehat{ACB}+\widehat{ACD}=\widehat{BCD}\)

Tam giác BDC có : \(\widehat{ABC}+\widehat{ADC}+\widehat{BDC}=180^o\)( Tổng 3 góc trong tam giác ) \(\Rightarrow\widehat{BCD}=\frac{180^o}{2}=90^o\)

23 tháng 12 2016

AB = AC (tam giác ABC cân tại A)

mà AB = \(\frac{1}{2}\) BD (A là trung điểm của BD)

=> AC = \(\frac{1}{2}\) BD

mà AC là đường trung tuyến của tam giác CDB (A là trung điểm của BD)

=> Tam giác CDB vuông tại C

=> BCD = 900

10 tháng 1 2015

bai nay bang 90 do

 

19 tháng 1 2017

góc ABC bằng 90 độ

a: Xét ΔBMC và ΔDMA có

MB=MD

góc BMC=góc DMA

MC=MA

=>ΔBMC=ΔDMA

=>góc MBC=góc MDA

=>BC//AD
b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hbh

=>AB=CD=CA và AD=BC

b,c: Đề sai rồi bạn

28 tháng 7 2023

cập nhật lại đề lần 1

1 tháng 3 2018

b) vì tam giác ABC là tam giác đều

\(\Rightarrow\)góc DBC=60 độ.

xét tam giác BDC và tam giác ADC có:

BD=AD(GT)

[góc DBC = góc DAC=60 độ (vì tam giác ABC đều)] hoặc [DC là cạnh chung]

BC=AC(GT)

\(\Rightarrow\)tam giác BDC=tam giác ADC(c.g.c hoặc c.c.c)

\(\Rightarrow\)góc BDC=góc ADC=90 độ( vì góc BDC+ góc ADC=180 độ).

áp dụng định lí tổng 3 góc bằng 180 độ vào tam giác BDC có

góc DBC+góc BDC+góc DCB= 180 độ

\(\Rightarrow\)góc DCB= 180 độ - 60 độ - 90 độ= 30 độ.

18 tháng 6 2018

Ta có: ∆ABC cân tại A

⇒ AB = AC và ∠B = ∠C1 (tính chất tam giác cân) (1)

Lại có: AD = AB ( do A là trung điểm BD).

Suy ra: AD = AC do đó ∆ACD cân tại A

Nên ∠D =∠C2(tính chất tam giác cân) (2)

Mà ∠BCD =∠C1+ ∠C2 (3)

Từ (1); (2) và (3) suy ra: ∠BCD =∠B +∠D (4)

Trong ∆BCD, ta có:

∠BCD +∠B +∠D =180o (tổng 3 góc trong tam giác) (5)

từ (4) và (5) suy ra : 2 ∠BCD =180° hay∠BCD =90°

16 tháng 12 2021

Xét ΔBCD có

CA là đường trung tuyến

CA=BD/2

Do đó: ΔBCD vuông tại C