Tìm x,y biết : 2007^y - 2007^x + 1 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{xy+yz+xz}{xyz}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+3xyz-xyz=0\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz=0\)
\(\Leftrightarrow x^2y+xy^2+x^2z+xyz+y^2z+yz^2+xz^2+xyz=0\)
\(\Leftrightarrow x\left(xy+y^2+xz+yz\right)+z\left(y^2+yz+xz+xy\right)=0\)
\(\Leftrightarrow x\left[y\left(x+y\right)+z\left(x+y\right)\right]+z\left[y\left(y+z\right)+x\left(y+z\right)\right]=0\)
\(\Leftrightarrow x\left(x+y\right)\left(y+z\right)+z\left(y+z\right)\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
* x = -y
\(\dfrac{1}{x^{2007}}+\dfrac{1}{y^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{x^{2007}}-\dfrac{1}{x^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{z^{2007}}\)(*)
\(\dfrac{1}{x^{2007}+y^{2007}+z^{2007}}=\dfrac{1}{x^{2007}-x^{2007}+z^{2007}}=\dfrac{1}{z^{2007}}\)(*)
Từ (*) và (**) \(\Rightarrow\) đpcm
Tương tự xét y = -z và z = -x
Vậy nếu x, y, z khác 0 và x + y +z khác 0 thì \(\dfrac{1}{x^{2007}}+\dfrac{1}{y^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{x^{2007}+y^{2007}+z^{2007}}\).
(x + y) 2006 + 2007 (y - 1) = 0
=> (x + y) 2006 = 0 và 2007 (y - 1) = 0
=> x + y = 0 và y - 1 = 0
=> x + y = 0 và y = 0 + 1 = 1
=> x + 1 = 0 và y = 1
=> x = 0 - 1 = -1 và y = 1
(x - y - 5) + 2007 (y - 3) 2008 = 0
=> (x - y - 5) = 0 và 2007 (y - 3) 2008 = 0
=> x - y = 0 + 5 = 5 và (y - 3)2008 = 0
=> x - y = 5 và y - 3 = 0 => y = 0 + 3 = 3
=> x - 3 = 5 và y = 3
=> x = 5 + 3 = 8 và y = 3
(x - 1) 2 + (y + 3) 2 = 0
=> (x - 1) 2 = 0 và (y + 3) 2 = 0
=> x - 1 = 0 và y + 3 = 0
=> x = 0 + 1 = 1 và y = 0 - 3 = -3
tìm x y thõa mãn đẳng thức
(x+y) ^ 2006 +2007[y-1] = 0
[x-y-5] + 2007(y-3)^ 2008 = 0
(x-1) ^ 2 + (y+3) ^ 2 = 0
Đề như thế này phải ko nhân Shift rồi ấn số 6 là mũ
đặt tổng trên là A
có (2006x-2007)^2008>=0
và (2008y+2009)^2010>=0
từ các điều kiện trên =>A>=0
MÀ ĐỀ BÀI BẮT TÌM A=<0
TỪ 2 ĐIỀU KIỆN TRÊN =>A CHỈ CÓ THỂ =0
(=)(2006x-2007)^2008=0 và (2008y+2009)^2010=0
(=) 2006x-2007=0 và 2008y+2009=0
(=)2006x=2007 và 2008y=2009
(=)x=2007/2006 và y=2009/2008
vậy x=2007/2006 và y=2009/2008
Vì \(\hept{\begin{cases}\left(2006x-2007\right)^{2008}\ge0;\forall x\\\left(2008x+2009\right)^{2010}\ge0;\forall y\end{cases}}\)
\(\Rightarrow\left(2006x-2007\right)^{2008}+\left(2008x+2019\right)^{2010}\ge0;\forall x;y\)
Đẳng thức xảy ra khi :
\(\hept{\begin{cases}2006x-2007=0\\2008x+2009=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{2007}{2006}\\y=\frac{-2009}{2008}\end{cases}}\)
Vậy \(x=\frac{2007}{2006};y=\frac{-2009}{2008}\)
vì (x-2007)2 >= 0 với mọi x
(y + 3/4)2 >= 0 với mọi y
=> (x-2007)2 + (y + 3/4)2 =0
<=> x=2007 và y=-3/4
Do (x-2007)^2 >= 0 ; (y + 3/4)^2 >= 0
=> (x-2007)^2 + (y + 3/4)^2 = 0
<=>(x-2007)^2 = 0 => x-2007 =0 => x=2007
(y-3/4)^4 = 0 => x-3/4 = 0 => x=3/4
CÁi thứ hai :
vì 2007 (2x -y)^2008 >= 0 để bt <0 => 2x - y = 0 => 2x=y
=> y- 4 = 0 => y = 4
2x = 4 => x = 2
VẬy x = 2 ;4
Thứ ba :
Vì 2( x- 5)^4 >= 0
Để 2( x- 5)^4 + 5(2y- 7)^5 = 0
= > x- 5 = 0 => x = 5
2y -7 = 0 => y = 7/2
k có cặp x,y thỏa mãn điều kiện