K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

Số số hạng của tổng trên là:

[ 2n - (n+1) ] :1 +1 = n số hạng

Ta có

n+1 ; n +2 ; n +3 ; ... ; 2n -1 \(\le\) 2n

\(\Rightarrow\dfrac{1}{n+1};\dfrac{1}{n+2};\dfrac{1}{n+3};...;\dfrac{1}{2n-1}\ge\dfrac{1}{2n}\)

\(\Rightarrow\dfrac{1}{n+1}+\dfrac{1}{n+2}+\dfrac{1}{n+3}+...+\dfrac{1}{2n}\ge\dfrac{1}{2n}+\dfrac{1}{2n}+\dfrac{1}{2n}+...+\dfrac{1}{2n}\)

(n phân số \(\dfrac{1}{2n}\))

= \(\dfrac{1}{2}\)

Vậy \(\dfrac{1}{n+1}+\dfrac{1}{n+2}+\dfrac{1}{n+3}+...+\dfrac{1}{2n}\ge\dfrac{1}{2}\)

17 tháng 3 2018

\(a,\frac{1}{n+1}+\frac{1}{n+2}+......+\frac{1}{2n}\)

\(>\frac{1}{2n}+\frac{1}{2n}+.......+\frac{1}{2n}\)                 có \(n\) số \(\frac{1}{2n}\)

\(=n.\frac{1}{2n}=\frac{1}{2}\)

\(b,\frac{1}{1^2}+\frac{1}{2^2}+......+\frac{1}{n^2}< \frac{1}{1}+\frac{1}{1.2}+........+\frac{1}{\left(n-1\right).n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}\)

12 tháng 3 2018

Bạn xem lời giải chi tiết ở đường link dưới nhé:

Câu hỏi của Bùi Nguyễn Việt Anh - Toán lớp 6 - Học toán với OnlineMath

6 tháng 4 2016

Đặt 2^n-1 => n=3

      2^n+1 => n=3

Vậy 2^n-1=2^3-1=8-1=7

       2^n+1=2^3+1=8+1=9