K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

                  \(\Rightarrow\frac{2018a}{2018c}=\frac{2019b}{2019d}\)

Áp dụng t/c DTSBN : \(\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018a-2019b}{2018c-2019d}=\frac{2018a+2019b}{2018c+2019d}\)

                  Cái này đến đây là đề sai nhé ! Đề phải cho là C/m cái (2018a-2019b).(2018c+2019d) = (2018a-2019b)(2018c+2019d) mới đúng

5 tháng 12 2019

Đặt bằng k nhé

5 tháng 12 2019

Dăm ba mấy bài đặt k:v

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Ta có:

\(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018b^2k^2+2019b^2}{2018b^2k^2-2019b^2}=\frac{b^2\left(2018k^2+2019\right)}{b^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)

\(\frac{2018c^2+2019d^2}{2018c^2-2019d^2}=\frac{2018d^2k^2+2019d^2}{2018d^2k^2-2019d^2}=\frac{d^2\left(2018k^2+2019\right)}{d^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)

Từ đó \(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\)

20 tháng 11 2019

Với \(a+b+c+d=0\)

\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(d+a\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)

Khi đó \(M=-1-1-1-1=-4\)

Với \(a+b+c+d\ne0\)

Áp dụng dãy tỉ số bằng nhau

\(\frac{2019a+b+c+d}{a}=\frac{a+2019b+c+d}{b}=\frac{a+b+2019c+d}{c}=\frac{a+b+c+2019d}{d}\)

\(=\frac{2022\left(a+b+c+d\right)}{a+b+c+d}=2022\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow M=4\)

18 tháng 3 2020

\(\frac{a}{b}=\frac{c}{d}=t=>\hept{\begin{cases}a=bt\\c=dt\end{cases}}\)

vt\(=\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bt+b}{dt+d}\right)^2=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\left(1\right)\)

vt\(=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}=\frac{2018\left(bt\right)^2+2019b^2}{2018\left(dt\right)^2+2019d^2}=\frac{b^2\left(2018t^2+2019\right)}{d^2\left(2018t^2+2019\right)}=\frac{b^2}{d^2}\left(2\right)\)

từ (1) zà (2)

=>\(\left(\frac{a}{b}+\frac{c}{d}\right)^2=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}\left(dpcm\right)\)

27 tháng 10 2019

Áp dụng TC của dãy tỉ số bằng nhau , ta có :

\(\frac{2019a+b+c+d}{a}=\frac{a+2019b+c+d}{b}=\frac{a+b+2019c+d}{c}=\frac{a+b+c+2019d}{d}\)

\(=\frac{\left(2019a+a+a+a\right)+\left(2019b+b+b+b\right)+\left(2019c+c+c+c\right)+\left(2019d+d+d+d\right)}{a+b+c+d}\)

\(=\frac{2022\left(a+b+c+d\right)}{a+b+c+d}=2022\)

Xét a + b + c + d =0

=> ( a + b ) = - ( c + d ) ; ( b + c ) = - ( a + d ) ; ( c + d ) = - ( a + b ) ; (a + d ) = - ( b + c )

\(\Rightarrow M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{d+a}+\frac{-\left(a+b\right)}{b+a}+\frac{-\left(a+d\right)}{b+c}\)

     \(M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Xét a + b + c + d khác 0 

=> a = b = c = d 

=> M = 1 + 1 + 1 + 1 = 4

Vậy .....................

30 tháng 10 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{2020a}{2020c}=\frac{2019b}{2019d}=\frac{2020a+2019b}{2020c+2019d}=\frac{2020a-2019b}{2020c-2019d}\)

\(\Rightarrow\frac{2020a+2019b}{2020a-2019b}=\frac{2020c+2019d}{2020c-2019d}\)

4 tháng 12 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{2018a^2}{2018c^2}=\frac{2019b^2}{2019d^2}=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}=\frac{2018a^2-2019b^2}{2018c^2-2019d^2}\)

\(\Rightarrow\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\left(dpcm\right)\)

2.

\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2a+2b+2c+2d}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)

\(\Rightarrow a=\frac{2b}{2}=b;b=\frac{2c}{2}=c;c=\frac{2d}{2}=d;d=\frac{2a}{2}=a\)

\(\Rightarrow a=b=c=d\)

Ta có : \(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)

\(=\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}\)

\(=\frac{4a}{2a}=2\)

3.

\(\left(x-1\right)\left(x-3\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x-1< 0\\x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1>0\\x-3< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< 1\\x>3\end{cases}}\)( loại ) hoặc \(\hept{\begin{cases}x>1\\x< 3\end{cases}}\)

Vậy \(1< x< 3\)

Đặt \(A=\frac{1}{4\times9}+\frac{1}{9\times14}+\frac{1}{14\times19}+...+\frac{1}{44\times49}\)

Ta có : \(5\times A=\frac{5}{4\times9}+\frac{5}{9\times14}+\frac{5}{14\times19}+...+\frac{5}{44\times49}=\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}=\frac{1}{4}-\frac{1}{49}\)

\(=\frac{49}{196}-\frac{4}{196}=\frac{45}{196}\)

\(\Rightarrow A=\frac{9}{196}\)

Đặt \(B=1-3-5-7-...-49=1-\left(3+5+...+49\right)\)

Đặt \(C=3+5+...+49\) ( khoảng cách là 2 )

Số số hạng là : \(\left(49-3\right):2+1=24\)

Tổng C là : \(\left(49+3\right)\times24:2=624\)

\(\Rightarrow B=1-264=-623\)

Vậy \(A=\frac{9}{196}\times\frac{-623}{89}=\frac{-9}{28}\)

Dòng cuối cùng mình không chắc là đúng nhé !