K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

Tìm GTNN or GTLN bằng pp giải đenta nhé
\(y=\frac{x^2}{x^2-5x+7}\Leftrightarrow y.x^2-5xy+7y=x^2\Leftrightarrow\left(y-1\right)x^2-5xy+7y=0\)
\(\Delta=\left(5y\right)^2-4\left(y-1\right).7y\ge0\)
Giải BĐT trên là ra nhé

10 tháng 1 2019

ta có:\(x^2-5x+7=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}>0\); do đó y xác định với mọi x

\(y=\frac{x^2}{x^2-5x+7}\Leftrightarrow yx^2-5yx+7=x^2\)

                                   \(\Leftrightarrow\left(y-1\right)x^2-5yx+7y=0\)

-, Xét y = 1 ,ta có \(-5x+7=0\Leftrightarrow x=\frac{7}{5}\)

- , Xét y\(\ne\)1 ,ta có \(\Delta=25y^2-28y\left(y-1\right)=25y^2-28y^2+28y\)

                                        \(=-3y^2+28y=y\left(-3y+28\right)\)

Để có x thì phải có \(\Delta\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}y\ge0;-3y+28\ge0\\y\le0;-3y+28\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y\ge0;y\le\frac{28}{3}\\y\le0;y\ge\frac{28}{3}\end{cases}}\Leftrightarrow0\le y\le\frac{28}{3}\)

y=0 thì \(x=\frac{5y}{2\left(y-1\right)}=0\)

y=\(\frac{28}{3}\)thì \(x=\frac{5y}{2\left(y-1\right)}=\frac{14}{5}\)

Vậy:     Giá trị nhỏ nhất của y là 0 với x =0

          Giá trị lớn nhất của y là \(\frac{28}{3}\)với x=\(\frac{14}{5}\)

7 tháng 6 2017

vì \(x^2-5x+7=x^2-\frac{2.5}{2}x+\frac{25}{4}+\frac{3}{4}=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)nên phương trình xác định với mọi \(x\)

TXD :\(D=R\)Ta có :

\(A\left(x^2-5x+7\right)=x^2\Leftrightarrow x^2\left(A-1\right)-5Ax+7A=0\)

  1. Nếu \(A=1\Rightarrow5x=7\Leftrightarrow x=\frac{7}{5}\)tức biểu thức nhận được giá trị là \(1\)
  2. Nếu \(A\ne1\)Thì phương trình có nghiệm khi : \(\Delta\ge0\Leftrightarrow25A^2-4\left(A-1\right)7A\ge0\Rightarrow A\left(28-3A\right)\ge0\Leftrightarrow0\le A\le\frac{28}{3}\)Vậy nên \(0\le A\le\frac{28}{3}\)
  •             \(A_{Min}=0\Leftrightarrow\frac{x^2}{x^2-5x+7}=0\Leftrightarrow x=0\)
  •             \(A_{Max}=\frac{28}{3}\Leftrightarrow\frac{x^2}{x^2-5x+7}=\frac{28}{3}\Leftrightarrow x=\frac{-5A}{2\left(A-1\right)}\Leftrightarrow x=\frac{14}{5}\)
7 tháng 6 2017

Sorry em ko bt làm  em mới học lớp 5 thui

16 tháng 4 2019

  \(\frac{x^2}{x^2-5x+7}\)

Ta có : \(x^2-5x+7=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}>0\)     do đó y xác định với mọi x

  \(y=\frac{x^2}{x^2-5x+7}\Leftrightarrow yx^2-5yx+7y=x^2\)

                                     \(\Leftrightarrow\left(y-1\right)x^2-5yx+7y=0\)

* Xét y = 1 ta có : \(-5x+7=0\Leftrightarrow x=\frac{7}{5}\)

* Xét y \(\ne\)1 ta có : \(\Delta=25y^2-28y\left(y-1\right)=25y^2-28y^2+28y\)

                                         \(=-3y^2+28y=y\left(-3y+28\right)\)

Để có x thì phải có \(\Delta\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}y\ge0;-3y+28\ge0\\y\le0;-3y+28\le0\end{cases}\Leftrightarrow\orbr{\begin{cases}y\ge0;y\le\frac{28}{3}\\y\le0;y\ge\frac{28}{3}\end{cases}\Leftrightarrow}0\le y\le\frac{28}{3}}\)

 y = 0 thì \(x=\frac{5y}{2\left(y-1\right)}=0\)

y = \(\frac{28}{3}\)thì \(x=\frac{5y}{2\left(y-1\right)}=\frac{14}{5}\)

Vậy :   Giá trị nhỏ nhất của y là 0 với x = 0

          Giá trị nhỏ nhất của y là \(\frac{28}{3}\) với x = \(\frac{14}{5}\)

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

4 tháng 12 2016

XD moi x

\(yx^2+y=x^2+3x+5\Leftrightarrow\left(y-1\right)x^2-3x+\left(y-5\right)=0\)

dat y-1=a cho gon

\(ax^2-3x+\left(a-4\right)=0\)(1)

tim DK a de phuong trinh tren(1) co nghiem

a=0=>-3x-4=0=> x=4/3

voi a \(\ne0\)(1) phuong trinh bac 2

=>delta(x)=3^2-4a.(a-4)\(\ge0\) 

\(\Leftrightarrow9-4a^2+16a\ge0\Leftrightarrow4a^2-16a-9\le0\)

delta"(a)=4^2-4.(-9)=16+36=52=4.13

\(\orbr{\begin{cases}a_1=\frac{4-2\sqrt{13}}{4}=1-\frac{\sqrt{13}}{2}\\a_2=\frac{4+2\sqrt{13}}{4}=1+\frac{\sqrt{13}}{2}\end{cases}}\)

\(\left(1-\frac{\sqrt{13}}{2}\right)\le a\le1+\frac{\sqrt{13}}{2}\)

\(1-\frac{\sqrt{13}}{2}\le y-1\le1+\frac{\sqrt{13}}{2}\)

\(2-\frac{\sqrt{13}}{2}\le y\le2+\frac{\sqrt{13}}{2}\)

16 tháng 11 2016

Ta có: \(A=2013-xy\Leftrightarrow y=\frac{2013-A}{x}\)

Đặt \(2013-A=B\)thì ta có \(y=\frac{B}{x}\)(1)

Theo đề bài có

\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)

\(\Leftrightarrow5x^2+\frac{B^2}{4x^2}+\frac{1}{4x^2}=\frac{5}{2}\)

\(\Leftrightarrow20x^4-10x^2+B^2+1=0\)

Để PT có nghiệm (theo biến x2) thì \(\Delta\ge0\)

\(\Leftrightarrow5^2-20\left(B^2+1\right)\ge0\)

\(\Leftrightarrow B^2\le0,25\Leftrightarrow-0,5\le B\le0,5\)

\(\Leftrightarrow-0,5\le2013-A\le0,5\)

\(\Leftrightarrow2012,5\le A\le2013,5\)

Đạt GTLN khi \(\left(x,y\right)=\left(\frac{1}{2},-1;-\frac{1}{2},1\right)\)

Đạt GTNN khi \(\left(x;y\right)=\left(\frac{1}{2},1;-\frac{1}{2},-1\right)\)