K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

3-/x/=5=>/x/=-2(vô lý)                                                          /2-x/=5=>2-x=5 hoặc 2-x=-5

=>ko có giá trị nào của x thỏa mãn điều kiện                                =>x=-3          =>x=7

/x+3/=0=>x+3=o=>x=-3                                                      /x+5/+3=1=>/x+5/=-2(vô lý)

/x-3/=1=>x-3=1 hoặc x-3=-1                                            =>ko có giá trị nào của x thỏa mãn điều kiện

  1. x-3=1=>x=4

x-3=-1=>x=2

11 tháng 7 2021

`a)|2x+1|=5`

`<=>` \(\left[ \begin{array}{l}2x+1=5\\2x+1=-5\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\) 

`b)|2x+1|=0`

`<=>2x+1=0`

`<=>2x=-1`

`<=>x=-1/2`

`c)|2x+1|=7`

`<=>` \(\left[ \begin{array}{l}2x+1=7\\2x+1=-7\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=6\\2x=-8\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\) 

`d)|2x+5|=|3x-7|`

`<=>` \(\left[ \begin{array}{l}2x+5=3x-7\\2x+5=7-3x\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=12\\5x=2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=12\\x=\dfrac25\end{array} \right.\) 

`e)|2x+7|=1`

`<=>` \(\left[ \begin{array}{l}2x+7=1\\2x+7=-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=-6\\2x=-8\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=3\\x=-4\end{array} \right.\) 

`g)|x-2|+|2x-3|=2`

Nếu `x>=2=>|x-2|=x-2,|2x-3|=2x-3`

`pt<=>x-2+2x-3=2`

`<=>3x-5=2`

`<=>3x=7`

`<=>x=7/3(tm)`

Nếu `x<=3/2=>|x-2|=2-x,|2x-3|=3-2x`

`pt<=>2-x+3-2x=2`

`<=>5-3x=2`

`<=>3x=3`

`<=>x=1(tm)`

Nếu `3/2<=x<=2=>|x-2|=2-x,|2x-3|=2x-3`

`pt<=>2-x+2x-3=2`

`<=>x-1=2`

`<=>x=3(l)`

`h)|x+2|+|1-x|=3x+2`

Vì `VT>=0=>3x+2>=0=>x>=-2/3`

`=>|x+2|=x+2`

`pt<=>x+2+|1-x|=3x+2`

`<=>|1-x|=2x(x>=0)`

`<=>` \(\left[ \begin{array}{l}2x=1-x\\2x=x-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}3x=1\\x=-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=\dfrac13(TM)\\x=-1(KTM)\end{array} \right.\) 

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

a.

$|2x+1|=5$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=5\\ 2x+1=-5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)

b.

$|2x+1|=0$

$\Leftrightarrow 2x+1=0$

$\Leftrightarrow x=-\frac{1}{2}$
c.

$|2x+1|=7$

\(\Leftrightarrow \left[\begin{matrix} 2x+1=7\\ 2x+1=-7\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=3\\ x=-4\end{matrix}\right.\)

 

23 tháng 2 2023

A) 3x² - x(3x - 5) = 9

3x² - 3x² + 5x = 9

5x = 9

x = 9/5

--------------------

B) 5x² + 9x - 2 = 0

5x² + 10x - x - 2 = 0

(5x² + 10x) - (x + 2) = 0

5x(x + 2) - (x + 2) = 0

(x + 2)(5x - 1) = 0

x + 2 = 0 hoặc 5x - 1 = 0

*) x + 2 = 0

x = -2

*) 5x - 1 = 0

5x = 1

x = 1/5

Vậy x = -2; x = 1/5

---------------------

D) 4(5 - 3x) = 5x - 5

20 - 12x = 5x - 5

-12x - 5x = -5 - 20

-17x = -25

x = 25/17

--------------------

E) 2x² - 11x + 14 = 0

2x² - 4x - 7x + 14 = 0

(2x² - 4x) - (7x - 14) = 0

2x(x - 2) - 7(x - 2) = 0

(x - 2)(2x - 7) = 0

x - 2 = 0 hoặc 2x - 7 = 0

*) x - 2 = 0

x = 2

*) 2x - 7 = 0

2x = 7

x = 7/2

Vậy x = 2; x = 7/2

23 tháng 2 2023

Câu C và F ghi đề bằng công thức đúng lại em

26 tháng 2 2021

`a,|x|=5`

`=>x=5` hoặc `x=-5`

`b,|x|<2`

Mà `|x|>=0,x in Z`

`=>|x|=0,|x|=1`

`=>x=0` hoặc `x=1` hoặc `x=-1`

`c,|x|=-1`

Mà `|x|>=0`

`=>` Không có giá trị nào của x thỏa mãn.

`d,|x|=|-5|`

`=>x=5` hoặc `x-5`

`e,|x+3|=0`

`=>x+3=0`

`=>x=-3`

7 tháng 3 2022

VD: 1/2 là 1 phần 2 đó nha.

 

a: x/3-1/6=1/5

=>x/3=11/30

hay x=11/90

b: =>1/2x=2

hay x=4

c: =>2/3:x=-7-1/3=-22/3

=>x=-1/11

19 tháng 2 2022

b, bạn xem lại đề 

c, đk : x khác 1 ; 3 

\(\Rightarrow x^2-8x+15+2x-2=x^2-4x+3\Leftrightarrow-2x=-10\Leftrightarrow x=5\left(tm\right)\)

d, đk: x khác -3 ; x khác 1 

\(\Rightarrow\left(2x+5\right)\left(x-1\right)+x^2+2x-3=4+\left(3x-1\right)\left(x+3\right)\)

\(\Leftrightarrow2x^2+3x-5+x^2+2x-3=4+3x^2+8x-3\)

\(\Leftrightarrow-3x=5\Leftrightarrow x=-\dfrac{5}{3}\left(tm\right)\)

16 tháng 2 2021

a) Có \(\left|x-3y\right|^5\ge0\);\(\left|y+4\right|\ge0\)

\(\rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\)

mà \(\left|x-3y\right|^5+\left|y+4\right|=0\)

\(\rightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)

 

b) Tương tự câu a, ta có:

\(\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)

 

c. Tương tự, ta có:

\(\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\\left|y+2\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-2\end{matrix}\right.\)

16 tháng 2 2021

a. \(\left|x-3y\right|^5\ge0,\left|y+4\right|\ge0\Rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\) \(\Rightarrow VT\ge VP\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\) Vậy...

b. \(\left|x-y-5\right|\ge0,\left(y-3\right)^4\ge0\Rightarrow\left|x-y-5\right|+\left(y-3\right)^4\ge0\) \(\Rightarrow VT\ge VP\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\) Vậy ...

c. \(\left|x+3y-1\right|\ge0,3\cdot\left|y+2\right|\ge0\Rightarrow\left|x+3y-1\right|+3\left|y+2\right|\ge0\) \(\Rightarrow VT\ge VP\) Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\3\left|y+2\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-\left(-2\right)\cdot3=7\\y=-2\end{matrix}\right.\) Vậy...

10 tháng 1 2023

`a)2x^2+3(x-1)(x+1)=5x(x+1)`

`<=>2x^2+3x^2-3=5x^2+5x`

`<=>5x=-3`

`<=>x=-3/5`

__________________________________________

`b)(x-3)^3+3-x=0` nhỉ?

`<=>(x-3)^3-(x-3)=0`

`<=>(x-3)(x^2-1)=0`

`<=>[(x=3),(x^2=1<=>x=+-1):}`

__________________________________________

`c)5x(x-2000)-x+2000=0`

`<=>5x(x-2000)-(x-2000)=0`

`<=>(x-2000)(5x-1)=0`

`<=>[(x=2000),(x=1/5):}`

__________________________________________

`d)3(2x-3)+2(2-x)=-3`

`<=>6x-9+4-2x=-3`

`<=>4x=2`

`<=>x=1/2`

__________________________________________

`e)x+6x^2=0`

`<=>x(1+6x)=0`

`<=>[(x=0),(x=-1/6):}`

10 tháng 1 2023

yeu

Bài 2: 

a: =>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

27 tháng 6 2021

\(a,=3x-9-4x+12=-x+3=0\)

\(\Leftrightarrow x=3\)

Vậy ..

\(b,=\left(x+2\right)\left(x+2-x+2\right)=4\left(x+2\right)=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy ..

\(c,=x^3-3x^2+3x-1=\left(x-1\right)^3=0\)

\(\Leftrightarrow x=1\)

Vậy ..

\(d,\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy ..

\(e,=\left(2x-3-5\right)\left(2x-3+5\right)=\left(2x-8\right)\left(2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{2}=4\\x=-\dfrac{2}{2}=-1\end{matrix}\right.\)

Vậy ...

a) Ta có: 3(x-3)-4x+12=0

\(\Leftrightarrow3\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow x-3=0\)

hay x=3

Vậy: S={3}

b) Ta có: \(\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4=0\)

\(\Leftrightarrow4x=-8\)

hay x=-2

Vậy: S={-2}

c) Ta có: \(x^3+3x=3x^2+1\)

\(\Leftrightarrow x^3-3x^2+3x-1=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: S={1}

d) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy: S={0;2;-2}