chứng minh rằng với mọi số tự nhiên khác 0 là a thì 2*a*(2a-1)*...*(a+3)*(a+2)*a+1 chia hết cho 2^a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/Gọi 3 số tn liên tiếp là a , a+1 , a+2
Ta có A=a.(a+1).(a+2)
Chứng minh A chia hết cho 2: Chỉ có hai trường hợp
+Nếu a=2k =>A chia hết cho 2
+Nếu a=2k+1 =>a+1=2k+1+1= 2(k+1) =>A chia hết cho 2
Chứng minh A chia hêt cho 3: Chỉ có ba trường hợp
+Nếu a=3k =>A chia hết cho 3
+Nếu a=3k+1 =>a+2=3k+1+2=3k+3=3(k+1) =>A chia hết cho 3
+Nếu a=3k+2 =>a+1=3k+2+1=3k+3=3(k+1) =>A chia hết cho 3
vì A chia hết cho cả 2 và 3
mà ƯCLN(2,3)=1
vậy A chia hết cho 6
bài b bạn làm tương tự
1./ Gọi tích của 3 số tự nhiên liên tiếp là: A = n*(n+1)(n-1)
Trong 3 số tự nhiên liên tiếp thì:
- Có ít nhất 1 số chẵn: => A chia hết cho 2
- Có 1 số chia hết cho 3 => A chia hết cho 3.
A chia hết cho cả 2 và 3 mà U(2;3) = 1 => A chia hết cho 2x3 = 6. đpcm
2./ Tương tự, gọi tích B = a*(a + 1)*(2a + 1)
- a và a+1 là 2 số tự nhiên liên tiếp nên sẽ có 1 số chẵn => B chia hết cho 2.
- Nếu a hoặc a+1 chia hết cho 3 thì B chia hết cho 3.
- Bếu a và a+1 không chia hết cho 3 thì từ kết quả câu 1./ số tự nhiên tiếp theo: a+2 sẽ chia hết cho 3 hay 2a + 4 chia hết cho 3 hay 2a + 1 + 3 chia hết cho 3 => 2a + 1 chia hết cho 3 => B chia hết cho 3.
Như vậy, bất kỳ số tự nhiên a nào thì B cũng chia hết cho cả 2 và 3 => b chia hết cho 6.
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
Nếu a chia hết cho d thì 2a chia hết cho d.
Ta lại có 2a - 1 chia hết cho d nên 2a - (2a - 1) = 2a - 2a + 1 = 1 chia hết cho d.
Vậy d = 1
\(1,\left(2n-3\right)^2-9=\left(2n-3-3\right)\left(2n-3+3\right)=\left(2n-6\right)2n=4n\left(n-3\right)⋮4\)
\(2,=a^3\left(a-2\right)-a\left(a-2\right)=\left(a-2\right)\left(a^3-a\right)=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\)
Vì đây là tích 4 số nguyên lt nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)
Lời giải:
Đặt $a+1=6k, b+2007=6m$ với $k,m\in\mathbb{Z}$
$4^n+a+b=4^n+6k-1+6m-2007=(4^n-2008)+6k+6m$
Hiển nhiên $4^n-2008\vdots 2$ với mọi $n$ là tự nhiên khác 0
$4\equiv 1\pmod 3\Rightarrow 4^n\equiv 1\pmod 3$
$\Rightarrow 4^n-2008\equiv 1-2008\equiv -2007\equiv 0\pmod 3$
Vậy $4^n-2008$ chia hết cho cả 2 và 3 nên chia hết cho 6
$\Rightarrow 4^n+a+b=4^n-2008+6k+6m\vdots 6$ (đpcm)
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.