Bộ GD&ĐT cấm dạy thêm: Giải pháp nào dành cho nhà trường và giáo viên?
🔥 Xem ngay Bộ đề kiểm tra giữa kỳ II năm học 2024 - 2025
Chinh phục Đấu trường Tri thức OLM hoàn toàn mới, xem ngay!
🔥 Tặng ngay trọn bộ khóa ôn thi khi mua VIP
🔥 Nhận ngay bộ tài nguyên giảng dạy "3 trong 1" khi mua VIP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm Giá trị nhỏ nhất của biểu thức :
\(A=5+\frac{-8}{4\left|5x+7\right|+24}\)
Để \(A_{min}\)\(\Rightarrow\frac{-8}{4\left|5x+7\right|+24}\)Min
Mà \(\frac{-8}{4\left|5x-7\right|+24}\)Min khi \(4\left|5x-7\right|+24\)Min
Có \(4\left|5x-7\right|+24\ge24\)
\(\Rightarrow A\ge5+\frac{-8}{24}=5-\frac{1}{3}=\frac{14}{3}\)
Vậy Min A = 14/3 <=> x = 7/5
Tìm giá trị nhỏ nhất của biểu thức sau: A= 5+(-8)/4|5x + 7| + 24
Lời giải:
$A=5-2|5x+7|+24=29-2|5x+7|$ không có GTNN bạn nhé.
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Giúp mk nha!
1)Tìm giá trị nhỏ nhất của biểu thức sau:
\(\left|x-2002\right|+\left|x-2001\right|\)
2)Cho:\(A=\frac{7!4!}{10!}\cdot\left(\frac{8!}{3!5!}-\frac{9!}{2!5!}\right)\)
1,cho biểu thức C=\(\left(\frac{x}{x+2}+\frac{5x-12}{5x^2-12x}-\frac{8}{5x^2+10x}\right):\frac{x^2-2x+2}{x^2-x-6}\)
a,tìm điều kiện để giá trị của C được xác định
b,rút gọn biểu thức
c,tìm giá trị của x để giá trị của C nhỏ nhất.Xác định giá trị nhỏ nhất đó
d,tìm các giá trị nguyên của x để C có giá trị nguyên
Tìm các giá trị lớn nhất của biểu thức:
a. \(E=\frac{4}{5}+\frac{20}{\left|3x-5\right|+\left|4y+5\right|+8}\)
b. \(F=-6+\frac{24}{2.\left|x-2y\right|+3.\left|2x+1\right|+6}\)
Tìm Giá Trị Lớn Nhất Của Các Biểu Thức:
a. \(E=\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\)
cho a,b,c la các số thực dương thoả mãn 2(a+b)+b=12. Tìm giá trị nhỏ nhất của biểu thức
P= \(\frac{1}{\left(a+3\right)^2}+\frac{4}{\left(b+4\right)^2}+\frac{8}{\left(c+5\right)^2}\)
Tìm GTNN của biểu thức sau: 5+\(\frac{-8}{4\left|5X+7\right|+24}\)
Tìm giá trị nhỏ nhất của biểu thức \(28\cdot\left(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\right)\)
Để \(A_{min}\)\(\Rightarrow\frac{-8}{4\left|5x+7\right|+24}\)Min
Mà \(\frac{-8}{4\left|5x-7\right|+24}\)Min khi \(4\left|5x-7\right|+24\)Min
Có \(4\left|5x-7\right|+24\ge24\)
\(\Rightarrow A\ge5+\frac{-8}{24}=5-\frac{1}{3}=\frac{14}{3}\)
Vậy Min A = 14/3 <=> x = 7/5