K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

\(\text{Giả sử : }\sqrt{ab}=\sqrt{a}.\sqrt{b}\)

\(\Rightarrow\left(\sqrt{ab}\right)^2=\left(\sqrt{a}.\sqrt{b}\right)^2\)

\(\Rightarrow ab=\left(\sqrt{a}\right)^2.\left(\sqrt{b}\right)^2\)

\(\Rightarrow ab=a.b\left(\text{luôn đúng}\right)\)

\(\text{Vậy }\sqrt{ab}=\sqrt{a}.\sqrt{b}\left(đpcm\right)\)

8 tháng 1 2019

\(Bạn Moharmed Salah lm đúng rồi nhé\)

NV
18 tháng 9 2019

\(\Leftrightarrow\sqrt{a}+\sqrt{b}\ge\frac{2\sqrt{ab}}{\sqrt[4]{ab}}\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}-2\sqrt[4]{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt[4]{a}-\sqrt[4]{b}\right)\ge0\) (luôn đúng)

Dấu "=" xảy ra khi a=b

b: 

1: ĐKXĐ: a>0; a<>1

2: \(A=\left(\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a}{\sqrt{a}+1}\)

\(=\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\cdot\dfrac{a}{\sqrt{a}+1}\)

\(=\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a}{\sqrt{a}+1}=\sqrt{a}\left(\sqrt{a}-1\right)\)

3: \(A=a-\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu '=' xảy ra khi a=1/4

NV
3 tháng 8 2021

\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)

\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự và cộng lại:

\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)

21 tháng 6 2017

Bài 1:

Áp dụng bất đẳng thức AM-MG ta có:

\(\dfrac{a+b}{2}\ge\sqrt{ab};\dfrac{a+c}{2}\ge\sqrt{ac};\dfrac{b+c}{2}\ge\sqrt{bc}\)

\(\Rightarrow\dfrac{a+b}{2}+\dfrac{a+c}{2}+\dfrac{b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)

\(\Rightarrow\dfrac{\left(a+b+c\right).2}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)

\(\Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) (đpcm)

Chúc bạn học tốt!!!

21 tháng 6 2017

AM-GM chứ

11 tháng 12 2017

Ta chứng minh: \(\sqrt{a+bc}\ge a+\sqrt{bc}\)

Thật vậy, ta có:

\(a+bc\ge a^2+2a\sqrt{bc}+bc\)

\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)

\(\Leftrightarrow1\ge a+2\sqrt{bc}\)

\(\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)

\(\Leftrightarrow b+c\ge2\sqrt{bc}\)(Đúng theo Cauchy)

Tương tự: \(\sqrt{b+ca}\ge b+\sqrt{ca}\)

\(\sqrt{c+ab}\ge c+\sqrt{ab}\)

Cộng vế theo vế các BĐT vừa chứng minh ta được đpcm.

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)