ai tính nahnh hộ mình với
Tính nhanh
B = 11x12+12x14+15x17+16x18+...+99x101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=13.15+15.17+17.19+...+99.101\)
\(\Rightarrow6A=13.15.6+15.17.6+17.19.6+...+99.101.6\)
\(\Rightarrow6A=13.15.\left(17-11\right)+15.17.\left(19-13\right)+17.19.\left(21-15\right)+...+99.101.\left(103-97\right)\)
\(\Rightarrow6A=\left(13.15.17-11.13.15\right)+\left(15.17.19-13.15.17\right)+\left(17.19.21-15.17.19\right)+...+\left(99.101.103-97.99.101\right)\)
\(\Rightarrow6A=99.101.103-11.13.15\)
\(\Rightarrow6A=1027752\)
\(\Rightarrow A=171292\)
=4x(\(\frac{1}{11x13}\)+\(\frac{1}{13x15}\)+.......+\(\frac{1}{99x101}\))
=4x(\(\frac{1}{11}\)-\(\frac{1}{13}\)+\(\frac{1}{13}\)-\(\frac{1}{15}\)+....+\(\frac{1}{99}\)-\(\frac{1}{101}\))
4x(\(\frac{1}{11}\)-\(\frac{1}{101}\))
=4x \(\frac{90}{1111}\)
=\(\frac{360}{1111}\)
\(\frac{4}{11\times13}+\frac{4}{13\times15}+\frac{4}{15\times17}+...+\frac{4}{99\times101}\)
\(=\frac{4}{11}-\frac{4}{13}+\frac{4}{13}-\frac{4}{15}+\frac{4}{15}-\frac{4}{17}+...+\frac{4}{99}-\frac{4}{101}\)
\(=\frac{4}{11}-\frac{4}{101}\)
\(=\frac{360}{1111}\)
A=\(\frac{4}{11}-\frac{4}{13}+\frac{4}{13}-\frac{4}{15}+...+\frac{4}{99}-\frac{4}{101}\)
\(A=4\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=4.\left(\frac{1}{11}-\frac{1}{101}\right)\)
A=4. 90/1111=360/1111
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{13\times15}+\dfrac{2}{15\times17}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{17}\)
\(=1-\dfrac{1}{17}\)
\(=\dfrac{16}{17}\)
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{15\cdot17}\)
\(=2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{17}\)
\(=2-\dfrac{1}{17}\)
\(=\dfrac{33}{17}\)
Ta có :
\(G=\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{97.99}+\frac{2}{99.101}\)
\(G=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
\(G=\left(\frac{1}{13}-\frac{1}{13}\right)+\left(\frac{1}{15}-\frac{1}{15}\right)+\left(\frac{1}{17}-\frac{1}{17}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)+\left(\frac{1}{11}-\frac{1}{101}\right)\)
\(G=\frac{1}{11}-\frac{1}{101}\)
\(G=\frac{101}{1111}-\frac{11}{1111}\)
\(G=\frac{101-11}{1111}\)
\(G=\frac{90}{1111}\)
Vậy \(G=\frac{90}{1111}\)
Chúc bạn học tốt ~
\(G=\frac{2}{11\times13}+\frac{2}{13\times15}+\frac{2}{15\times17}+...+\frac{2}{97\times99}+\frac{2}{99\times101}\)
\(G=2\times\left(\frac{1}{11\times13}+\frac{1}{13\times15}+\frac{1}{15\times17}+...+\frac{1}{97\times99}+\frac{1}{99\times101}\right)\)
\(G=2\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\right)\)
( GẠCH BỎ CÁC PHÂN SỐ GIỐNG NHAU TRONG NGOẶC)
\(G=2\times\left(\frac{1}{11}-\frac{1}{101}\right)\)
\(G=2\times\frac{90}{1111}\)
\(G=\frac{180}{1111}\)
MK VIẾT ĐỀ BÀI NHƯ THẾ CÓ ĐÚNG KO BN!
MK CHỈ NGHĨ RA VẬY THÔI
CHÚC BN HỌC TỐT!!!!