giải phương trình sau
\(\frac{1}{\left(x+a\right)^2-1}+\frac{1}{\left(x+1\right)^2-a^2}=\frac{1}{x^2-\left(a+1\right)^2}\)\(+\frac{1}{x^2-\left(a-1\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{\left(x+3\right)-x}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Rightarrow x\left(x+3\right)=10=2.\left(2+3\right)\)
\(\Rightarrow x=2\)
pt <=> \(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(\frac{(b-c)(1+a)^2}{x+a^2}+\frac{(c-a)(1+b)^2}{x+b^2}+\frac{(a-b) (1+c)^2}{x+c^2}=0\)
\(\Leftrightarrow \sum (b-c)(1+a)^2(x+b^2)(x+c^2)=0\)
\(\Leftrightarrow (a-b)(b-c)(c-a)(x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca)=0\)
\(\Leftrightarrow x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca=0\)
Xét phương trình \(x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca=0\)
Ta thấy \(\Delta=(2a+2b+2c+ab+bc+ca-1)^2+8(a+b+c-abc)\)
Nếu \(\Delta <0\) thì phương trình vô nghiệm
Nếu \(\Delta =0\) thì phương trình có nghiệm kép
Nếu \(\Delta >0\) thì phương trình có hai nghiệm
Bạn chú ý cách viết phương trình.
Phương trình chỉ có dạng f(x)=g(x) thôi, không có dạng A=f(x)=g(x) như bạn viết.
\(VT=\left[8\left(x+\frac{1}{x}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\right]+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=4\left(x+\frac{1}{x}\right)^2\left(2-x^2-\frac{1}{x^2}\right)+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4\left(x+\frac{1}{x}\right)^2\left(x-\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4\left(x^2-\frac{1}{x^2}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4x^4+8-\frac{4}{x^4}+4x^4+8+\frac{4}{x^4}\)
\(=16\)
Phương trình đã cho trở thành
\(\left(x+4\right)^2=16\\ \Leftrightarrow\orbr{\begin{cases}x+4=-4\\x+4=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=0\end{cases}}\)
a)\(\frac{1}{a+b-x}\)=\(\frac{1}{a}\)+\(\frac{1}{b}\)-\(\frac{1}{x}\)\(\Leftrightarrow\)\(\frac{1}{a+b-x}\)+\(\frac{1}{x}\)=\(\frac{a+b}{ab}\)\(\Leftrightarrow\)\(\frac{x+a+b-x}{x\left(a+b-x\right)}\)=\(\frac{a+b}{ab}\)
\(\Leftrightarrow\)\(\frac{a+b}{xa+xb-x^2}\)=\(\frac{a+b}{ab}\)\(\Leftrightarrow\)\(xa+xb-x^2\)=\(ab\)\(\Leftrightarrow\)\(xa+xb-x^2-ab\)=\(0\)
\(\Leftrightarrow\)\(a\left(x-b\right)-x\left(x-b\right)=0\)\(\Leftrightarrow\)\(\left(x-b\right)\left(a-x\right)=0\)\(\Leftrightarrow\)\(x=b;x=a\)
b) \(\Leftrightarrow\)\(\frac{1}{\left(x+a-1\right)\left(x+a+1\right)}+\frac{1}{\left(x+a+1\right)\left(x-a+1\right)}\)=\(\frac{1}{\left(x-a-1\right)\left(x+a+1\right)}+\frac{1}{\left(x-a+1\right)\left(x+a-1\right)}\)\(\Leftrightarrow\)\(\frac{1}{\left(x+a-1\right)\left(x+a+1\right)}-\frac{1}{\left(x-a-1\right)\left(x+a+1\right)}\)=\(\frac{1}{\left(x-a+1\right)\left(x+a-1\right)}-\frac{1}{\left(x+a+1\right)\left(x-a+1\right)}\)\(\Leftrightarrow\)\(\frac{1}{\left(x+a+1\right)}\left(\frac{1}{x+a-1}-\frac{1}{x-a-1}\right)\)=\(\frac{1}{x-a+1}\left(\frac{1}{x+a-1}-\frac{1}{x+a+1}\right)\)\(\Leftrightarrow\)\(\frac{1}{x+a+1}.\frac{-2a}{\left(x+a-1\right)\left(x-a-1\right)}=\frac{1}{x-a+1}.\frac{2}{\left(x+a-1\right)\left(x+a+1\right)}\)(Quy dong phan so ttrong dau ngoac)
\(\Leftrightarrow\)\(\frac{-2a}{x-a-1}=\frac{2}{x-a+1}\)\(\Leftrightarrow\)\(-2a\left(x-a+1\right)=2\left(x-a-1\right)\)\(\Leftrightarrow\)\(-ax+a^2-a=x-a-1\)\(\Leftrightarrow\)\(-ax-x+a^2-1=0\)\(\Leftrightarrow\)\(\left(a+1\right)\left(-x+a-1\right)=0\)
neu a+1=0 thi phuong trinh co vo so nghiem, neu a+1\(\ne\)0 thi x=a-1
CÁi này bạn sử dụng quy tắc chuyển vế nhé
Lấy 1/(x+a)^2 - 1 - 1/x^2-(a-1)^2
+ 1/(x+1)^2 - a^2 - 1/x^2 - (a+1)^2
= 0
<=> -2a/(x+a+1)(x+a-1)(x-a+1) - 2/(x+a+1)(x+1-a)(x-a-1) = 0
<=> -2/(x+a+1)(x+1-a) [ a/x+a-1 + 1/x-a-1] = 0
<=> ...