Giai phương trình với a là hằng số.
a) a(ax+1) = x(a+2)+2
b)\(\dfrac{x-a}{3}=\dfrac{x+3}{a}-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x\(\ne3,x\ne-3\)
\(\Rightarrow\left(x-a\right)\left(a-3\right)+\left(x+3\right)\left(a+3\right)=-6a\)
\(\Leftrightarrow xa-3x-a^2+3a+ax+3x+3a+3=-6a\)
\(\Leftrightarrow2ax-a^2+12a+3=0\) \(\Leftrightarrow2ax=a^2-12a-3\Leftrightarrow x=\dfrac{a^2}{2}-6a-\dfrac{3}{2}\)(TM)
Vậy...
a: \(=-\dfrac{2}{a}\cdot x^2\cdot x^3\cdot y^3\cdot y\cdot z^2=-\dfrac{2}{a}x^5y^4z^2\)
b: \(=-a\cdot\dfrac{1}{4}\cdot\left(-b\right)^3\cdot x\cdot xy^3\cdot y^3=\dfrac{1}{4}ab^3x^2y^6\)
a, \(=\dfrac{-2x^5y^3z^2}{a}\)
b, \(=-\dfrac{xa\left(xy^3\right).1\left(-b^3y^3\right)}{4}=\dfrac{xa\left(b^3xy^6\right)}{4}=\dfrac{x^2ab^3y^6}{4}\)
P(x)=\(ax^2+bx+c\) (1)(a\(\ne0\) )
Ta có :
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)\(\Rightarrow\left\{{}\begin{matrix}b=2a\\c=3a\end{matrix}\right.\)(2)
Thay(2) vào (1)\(\Rightarrow P\left(x\right)=ax^2+2ax+3a\)
\(\Rightarrow\dfrac{P\left(-2\right)-3P\left(-1\right)}{a}=\dfrac{4a-4a+3a-3\left(a-2a+3a\right)}{a}\)=\(\dfrac{3a-3a+6a-9a}{a}=\dfrac{-3a}{a}=-3\)
a: =>4(2x-1)-12x=3(x+3)+24
=>8x-4-12x=3x+9+24
=>-4x-4=3x+33
=>-7x=37
=>x=-37/7
b: =>(x-2)(x+2+x-9)=0
=>(2x-7)(x-2)=0
=>x=2 hoặc x=7/2
c: =>(x-1)(x+3)-x+3=3x+3
=>x^2+2x-3-x+3=3x+3
=>x^2+x-3x-3=0
=>x^2-2x-3=0
=>(x-3)(x+1)=0
=>x=-1
\(\Leftrightarrow\dfrac{x}{a}-x>4-a-\dfrac{3}{a}\)
\(\Leftrightarrow x\left(\dfrac{1}{a}-1\right)>\dfrac{4a-a^2-3}{a}\)
- Nếu \(\dfrac{1}{a}-1>0\Leftrightarrow0< a< 1\)
\(\Rightarrow x>\dfrac{4a-a^2-3}{a\left(\dfrac{1}{a}-1\right)}\Leftrightarrow x>a-3\)
- Nếu \(\dfrac{1}{a}-1< 0\Leftrightarrow\left[{}\begin{matrix}a< 0\\a>1\end{matrix}\right.\)
\(\Rightarrow x< \dfrac{4a-a^2-3}{a\left(\dfrac{1}{a}-a\right)}\Leftrightarrow x< a-3\)
a: =>x*a^2+a=x(a+2)+2
=>x(a^2-a-2)=-a+2
=>x(a-2)(a+1)=-(a-2)
Để phương trình có nghiệm duy nhất thì (a-2)(a+1)<>0
=>\(a\notin\left\{2;-1\right\}\)
Để phương trình vô nghiệm thì a+1=0
=>a=-1
Để PT có vô số nghiệm thì a-2=0
=>a=2
b: ĐKXĐ: a<>0
\(\Leftrightarrow a\left(x-a\right)=3\left(x+3\right)-6a\)
\(\Leftrightarrow ax-a^2-3x-9+6a=0\)
\(\Leftrightarrow x\left(a-3\right)=a^2-6a+9=\left(a-3\right)^2\)
Nếu a=3 thì PT có vô số nghiệm
Nếu a<>3 và a<>0 thì PT có nghiệm duy nhất là x=a-3