K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

Hỏi đáp Toán

8 tháng 8 2021

Để pt có nghiệm thì

\(1+x\ne0\) và \(8-x\ne0\)

\(\Rightarrow x\ne-1\) và \(x\ne8\)

8 tháng 8 2021

\(\sqrt{1+x} +\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=m\)

( mk viết thiếu đề)

 

8 tháng 8 2021

Vì $\sqrt{1+x}\ge 0,\sqrt{8-x}\ge 0,\sqrt{(1+x)(8-x)}\ge 0$

$\to \sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}\ge 0$

mà $\sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}=m$

=> m≥0

8 tháng 8 2021

Đặt : 

\(t=\sqrt{1+x}+\sqrt{8-x}\) \(\left(t\ge0\right)\)

DKXĐ : \(-1\le x\le8\)

\(\Leftrightarrow t^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\) (1) 

BBT của \(t^2\) :

 \(x\) \(-1\)                                  \(0\)                                  \(8\)
\(t^2\)

                                        \(9+2\sqrt{2}\)

\(9\)                                                                           \(9\)

\(t\)

                                        \(1+2\sqrt{2}\)

                                                                            \(1\)

          \(2\sqrt{2}\)                                                                    

 

\(\Leftrightarrow t\in\left(1,2\sqrt{2}\right)\)


Thay \(\left(1\right)\) vào pt ta có :\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{t^2-9}{2}\) (1)

\(\Leftrightarrow f\left(t\right)=t^2+2t-9=2m\)

BBT của \(f\left(t\right)\) :

 \(t\) \(1\)                                                             \(2\sqrt{2}\)
\(f\left(t\right)\)

                                                                                                                                         \(4\sqrt{2}-1\)

\(-6\)

 

\(\Leftrightarrow2m\in\left[-6;4\sqrt{2}-1\right]\)   thì pt có nghiệm 

\(\Leftrightarrow m\in\left(-3;\dfrac{-1+4\sqrt{2}}{2}\right)\)

Vẽ dùm mình mấy cái mũi tên trên BBT nhé UwU

 

 

25 tháng 2 2016

\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=a\)     (1)

Điều kiện :

\(\begin{cases}1+x\ge0\\8-x\ge0\\\left(1+x\right)\left(8-x\right)\ge0\end{cases}\)   \(\Leftrightarrow\)    \(\begin{cases}x\ge-1\\x\le8\\-1\le x\le8\end{cases}\)   \(\Leftrightarrow\)  \(x\in\left[-1;8\right]\)  : = (*)

Đặt \(t=\sqrt{1+x}+\sqrt{8-x}\)  với điều kiện \(x\in\) (*) ta có

\(\begin{cases}t\ge0\\t^2=1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}\end{cases}\)

\(\Rightarrow\) \(\begin{cases}t\ge0\\9\le t^2\le9+\left(1+x+8-x\right)=18\end{cases}\)

\(\Rightarrow\) \(t\in\left[3;3\sqrt{2}\right]\) : = (*1)

Ngoài ra, từ đó còn có \(\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{t^2-9}{2}\)

Phương trình (1) trở thành 

\(f\left(t\right)=\frac{1}{2}\left(t^2+2t-9\right)=a\)  (2)

1) Với a=3 ta có : 

(2) \(\Leftrightarrow\) \(t^2+2t-15=0\)  \(\Leftrightarrow\)   \(\begin{cases}t=3\\t=-5\end{cases}\)

Trong 2 nghiệm trên, chỉ có t =3 thuộc (*1) nên với a=3 ta có

(1) \(\Leftrightarrow\)  \(\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{3^2-9}{2}=0\)   \(\Leftrightarrow\) \(\begin{cases}x=-1\\x=8\end{cases}\)

Hai nghiệm này cùng thuộc (*) như vậy khi a=3, phương trình đã cho có 2 nghiệm x=-1 và x=8

2)Nhận thấy phương trình (1) có nghiệm  \(x\in\) (*)  khi và chỉ khi phương trình (2)

có nghiệm t\(\in\) (*1) hay là khi và chỉ khi đường thẳng y=a (vuông góc với y'Oy) có điểm ching với phần đồ thị hàm số y=f(t) vẽ trên ( *1).

Lập bảng biến thiên của hàm số y = f(t) trên (*1) với nhận xét rằng f'(t) = t+1>0, mọi t  \(x\in\) (*) 

t\(-\infty\)      3              \(3\sqrt{2}\)               \(+\infty\)
f'(t)                       +
 f (t)

                                  \(\frac{9+6\sqrt{2}}{2}\)

      3

 Từ nhận xét trên và từ bảng biến thiên, ta được \(3\le a\le\frac{9+6\sqrt{2}}{2}\)  là giá trị cần tìm

1:

\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)

\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)

NV
15 tháng 12 2020

\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\) 

\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)

\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)

\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)

\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)

\(\Leftrightarrow VT\le2g\left(x\right)\)

Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)

\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)

Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)

Ta có:

\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)

\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy tập nghiệm của pt đã cho có đúng 1 phần tử

11 tháng 3 2021

undefined

11 tháng 3 2021

undefined

4 tháng 11 2018

\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt[4]{x\left(1-x\right)}=m^3\)

4 tháng 11 2018

gì vậy ạ