Chứng minh rằng \(\left(a^2+b^2\right).\left(x^2+y^2\right)=\left(ax+by\right)^2+\left(ay-bx\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
\(\Rightarrow\frac{acy-bcx}{c^2}=\frac{bcx-abz}{b^2}=\frac{abz-acy}{a^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}}\)
\(\Rightarrow\left(ay-bx\right)^2+\left(cx-az\right)^2+\left(bz-ay\right)^2=0\)
\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz\)
\(+c^2y^2=0\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
Ta có:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(=a^2x^2-2abxy+b^2y^2+a^2y^2+2abxy+b^2x^2\) \(=\left(ax-by\right)^2+\left(ay+bx\right)\)
\(=vp\)
\(\Rightarrowđpcm\)
Phương Ann Nhã Doanh đề bài khó wá Mashiro Shiina Đinh Đức Hùng
Nguyễn Huy Tú Lightning Farron Akai Haruma
Ta có: (a2+b2)(x2+y2)=(ax+by)2
\(\Leftrightarrow\)a2x2+a2y2+b2x2+b2y2=a2x2+2abxy+b2y2
\(\Leftrightarrow\)a2y2-2abxy+b2x2=0
\(\Leftrightarrow\)(ay-bx)2=0
\(\Leftrightarrow\)ay=bx
\(\Leftrightarrow\)\(\frac{a}{x}\)=\(\frac{b}{y}\)
#)Giải :
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Rightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2abxy+b^2y^2\)
\(\Rightarrow a^2y^2+b^2x^2=2abxy\)
\(\Rightarrow a^2y^2+b^2x^2-2abxy=0\)
\(\Rightarrow\left(ay-bx\right)^2=0\)
\(\Rightarrow ay-bx=0\)
\(\Rightarrow ay=bx\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y}\)(theo tính chất tỉ lệ thức)
\(\Rightarrowđpcm\)
Áp dụng BĐT Bunhiacopxki :
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
Dấu đẳng thức xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)
\(\Leftrightarrow ay=bx\)
\(\Leftrightarrow ay-bx=0\)
Ta có đpcm.
VP=\(A^2X^2+B^2Y^2+C^2Z^2+A^2Y^2+B^2X^2+A^2Z^2+C^2X^2+B^2Z^2+C^2Y^2\)
=\(A^2\left(X^2+Y^2+Z^2\right)+B^2\left(X^2+Y^2+Z^2\right)+C^2\left(X^2+Y^2+Z^2\right)\)
=\(\left(X^2+Y^2+Z^2\right)\left(A^2+B^2+C^2\right)\)
\(\text{Đặt }\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}=k \Rightarrow\left\{{}\begin{matrix}a=kx\\b=ky\\c=kz\end{matrix}\right.\\\Rightarrow\left(ax+by+cz\right)^2=\left(kx^2+ky^2+kz^2\right)^2\\ =\left(kx^2+ky^2+kz^2\right)\left(kx^2+ky^2+kz^2\right)\\ =\left(x^2+y^2+z^2\right)\left(k^2x^2+k^2y^2+k^2z^2\right) \\ =\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\left(đpcm\right)\)
a) Sửa đề: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
Ta có: \(VP=\left(a-b\right)^2+4ab\)
\(=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2\)
\(=\left(a+b\right)^2=VT\)(đpcm)
b) Ta có: \(VT=\left(a-b\right)^2\)
\(=a^2-2ab+b^2\)
\(=a^2+2ab+b^2-4ab\)
\(=\left(a+b\right)^2-4ab=VP\)(đpcm)
c) Ta có: \(VP=\left(ax-by\right)^2+\left(ay+bx\right)^2\)
\(=a^2x^2-2axby+b^2y^2+a^2y^2+2aybx+b^2x^2\)
\(=a^2x^2+b^2y^2+a^2y^2+b^2x^2\)
\(=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)
\(=\left(x^2+y^2\right)\left(a^2+b^2\right)=VT\)(đpcm)
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)(1)
\(\left(ax+by\right)^2+\left(ay-bx\right)^2\)
\(=a^2x^2+2axby+b^2y^2+a^2y^2-2aybx+b^2x^2\)
\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)(2)
Từ (1) và (2) ta có \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2+\left(ay-bx\right)^2\)( đpcm )
\(\left(a^2+b^2\right)+\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(\left(ax+by\right)^2+\left(ay-bx\right)^2=a^2x^2+2axby+b^2y^2+a^2y^2-2aybx+b^2x^2\)
\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
Suy ra : \(\left(a^2+b^2\right)+\left(x^2+y^2\right)=\left(ax+by\right)^2+\left(ay+bx\right)^2\left(đpcm\right)\)