Cho tam giác ABC với ba đường phân giác AD; BE; CF.
a) Tính FA/FB . EC/EA . DB/DC ?
b) Chứng minh:
1/AD + 1/BE + 1/CF > 1/BC + 1/ CA + 1/AB
Giúp mk với nha! Thanks các bạn nhìu nhìu.
Nhớ vẽ hình và ghi GT, KL nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AFDC có
\(\widehat{AFC}=\widehat{ADC}=90^0\)
Do đó: AFDC là tứ giác nội tiếp
b: \(\widehat{EFC}=\widehat{EAH}=\widehat{CAD}\)
\(\widehat{DFC}=\widehat{EBC}\)
mà \(\widehat{CAD}=\widehat{EBC}\)
nên \(\widehat{EFC}=\widehat{DFC}\)
hay FH là tia phân giác của góc EFD(1)
\(\widehat{FEH}=\widehat{BAD}\)
\(\widehat{DEH}=\widehat{FCB}\)
mà \(\widehat{BAD}=\widehat{FCB}\)
nên \(\widehat{FEH}=\widehat{DEH}\)
hay EH là tia phân giác của góc FED(2)
Từ (1) và (2) suy ra H là giao của các đường phân giác của ΔDEF
a) Ta có: \(\dfrac{DB}{DC}\cdot\dfrac{EC}{EA}\cdot\dfrac{FA}{FB}\)
\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)
=1
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\)
nên BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{HDC}+\widehat{HEC}=180^0\)
Do đó: CDHE là tứ giác nội tiếp
a. Xét tứ giác AFDC. Có
góc BFC= góc BEC=90( Giả thiết)
mà BFC và BEC là hai goc kề một cạnh và cùng nhìn cạnh AC
=> Tứ giác AFDC nội tiếp( quĩ tích cung chứa góc)
vẽ hình ta thấy 0 là trục tâm vì là giao điiẻm của 2 đường cao nên o cách đều 3 đỉnh