K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AFDC có 

\(\widehat{AFC}=\widehat{ADC}=90^0\)

Do đó: AFDC là tứ giác nội tiếp

b: \(\widehat{EFC}=\widehat{EAH}=\widehat{CAD}\)

\(\widehat{DFC}=\widehat{EBC}\)

mà \(\widehat{CAD}=\widehat{EBC}\)

nên \(\widehat{EFC}=\widehat{DFC}\)

hay FH là tia phân giác của góc EFD(1)

\(\widehat{FEH}=\widehat{BAD}\)

\(\widehat{DEH}=\widehat{FCB}\)

mà \(\widehat{BAD}=\widehat{FCB}\)

nên \(\widehat{FEH}=\widehat{DEH}\)

hay EH là tia phân giác của góc FED(2)

Từ (1) và (2) suy ra H là giao của các đường phân giác của ΔDEF

21 tháng 1 2019

hình chiếu là gì chưa học

a) Ta có: \(\dfrac{DB}{DC}\cdot\dfrac{EC}{EA}\cdot\dfrac{FA}{FB}\)

\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)

=1

a: Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\)

nên BCEF là tứ giác nội tiếp

Xét tứ giác CDHE có 

\(\widehat{HDC}+\widehat{HEC}=180^0\)

Do đó: CDHE là tứ giác nội tiếp

29 tháng 12 2016

a. Xét tứ giác AFDC. Có

góc BFC= góc BEC=90( Giả thiết)

mà BFC và BEC là hai goc kề một cạnh và cùng nhìn cạnh AC

=> Tứ giác AFDC nội tiếp( quĩ tích cung chứa góc)

23 tháng 4 2017

vẽ hình ta thấy 0 là trục tâm vì là giao điiẻm của 2 đường cao nên o cách đều 3 đỉnh