K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2019

 Em tham khảo ở đây nhé: https://olm.vn/hoi-dap/detail/10115034110.html

Chúc em học tốt!!!

5 tháng 1 2019

cho e cách giải đi cj Nguyễn Phú Quỳnh

25 tháng 1 2016

Giả sử p khác 3.Suy ra p không chia hết cho 3 do p là số nguyên tố.
Suy ra p chia 3 dư 1 hoặc 2.
1) p chia 3 dư 1=> p=3k+1=>p^2+44=(3k+1)^2+44=9k^2+6k+45=3(... chia hết cho 3,do đó ko là số nguyên tố
2)p chia 3 dư 2, cũng y vậy p^2+44 chia hết cho 3,do đó cũng ko là số nguyên tố

Vậy chỉ có p=3 thỏa thôi

23 tháng 6 2023

 Để ý rằng \(p^2-4=\left(p-2\right)\left(p+2\right)\), hơn nữa \(p-2< p+2\) nên để \(p^2-4\) là số nguyên tố thì \(p-2=1\) và \(p+2\) là số nguyên tố \(\Leftrightarrow p=3\).

 Thử lại, ta thấy rõ rằng \(3^2+4=13\) và \(3^2-4=5\) đều là các số nguyên tố. Vậy, \(p=3\) 

8 tháng 1 2016

Vì p là số nguyên tốt nên ta chỉ xét các giá trị p là số nguyên tố trong p.p+44 
Xét p=2 thì p.p+44=2.2+44=48 sẽ chia hết cho 2 (loại) 
Xét p=3 thì p.p+44=3.3+44=53 sẽ là số nguyên tố (chọn) 
Xét p>3, do các giá trị p nguyên tố lớn hơn 3 đều có p.p chia 3 dư 1 hay p2 = x.3+1. Mà 44 = 14.3+2 => p.p+44 chia hết cho 3. 
Vậy giá trị p=3 

30 tháng 5 2016

Với \(p=3\), ta có: \(3\) là số nguyên tố và \(p^2+44=3^2+44=53\) cũng là số nguyên tố.

Vậy \(p=3\) thỏa mãn.

* Với \(p\ne3\), vì p là số nguyên tố nên p không chia hết cho 3. Ta xét các trường hợp sau:

- Trường hợp 1: p chia 3 dư 1 => \(p=3k+1\left(k\in N\right)\)

Ta có: 

\(p^2+44=\left(3k+1\right)^2+44=\left(3k+1\right).\left(3k+1\right)+44\)
\(=3k.\left(3k+1\right)+1.\left(3k+1\right)+44=9k^2+3k+3k+1+44\)

\(=9k^2+6k+45=3.\left(3k^2+2k+15\right)\) chia hết cho 3

Vậy trường hợp này loại

- Trường hợp 2: p chia 3 dư 2 => \(p=3k+2\left(k\in N\right)\)

Ta có: 
\(p^2+44=\left(3k+2\right)^2+44=\left(3k+2\right).\left(3k+2\right)+44\)

\(=3k.\left(3k+2\right)+2.\left(3k+2\right)+44=9k^2+6k+6k+4+44\)

\(=9k^2+12k+48=3.\left(3k^2+4k+16\right)\) chia hết cho 3
Vậy trường hợp này loại

Tóm lại, chỉ có p = 3 là thỏa mãn đề bài.

30 tháng 5 2016

* Với p = 3, ta có: 3 là số nguyên tố và p^2 + 44 = 3^2 + 44 = 53 cũng là số nguyên tố

Vậy p = 3 thỏa mãn

Với \(\ne\) 3, vì p là số nguyên tố nên p không chia hết cho 3. Ta xét các trường hợp sau:

Trường hợp 1: p chia 3 dư 1 => \(p=3k+1\left(k\in N\right)\)

Ta có: 

p^2 + 44 = (3k+1)^2 + 44 = (3k+1).(3k+1) + 44

= 3k.(3k+1) + 1.(3k+1) + 44 = 9k^2 +3k + 3k + 1 + 44

= 9k^2 + 6k + 45 = 3.(3k^2+2k+15) chia hết cho 3

Vậy trường hợp này loại

- Trường hợp 2: p chia 3 dư 2 => \(p=3k^2+2\left(k\in N\right)\)

Ta có: 

p^2+44=(3k+2)2+44=(3k+2).(3k+2)+44

=3k.(3k+2)+2.(3k+2)+44=9k^2+6k+6k+4+44

=9k^2+12k+48=3.(3k^2+4k+16) chia hết cho 3

Vậy trường hợp này loại.

Tóm lại, chỉ có p=3 là thỏa mãn đề bài

5 tháng 7 2023

Gọi số cần tìm là a ( a ∈ N)

Ta có:

a chia 5 dư 1

⇒ a+4 chia hết cho 5

a chia 7 dư 3

⇒ a+4 chia hết cho 7

Mà (5,7) = 1

⇒ a+4 chia hết cho 35

Vì a là số tự nhiên nhỏ nhất 

⇒a+4 = 35

⇒a=35-4

⇒a=31

Vậy số tự nhiên cần tìm là 31

5 tháng 7 2023

          1)Gọi số x là số tự nhiên nhỏ nhất cần tìm, theo đề bài ta có :

x=5a+1 ; x=7b+3

Nên 5a+1=7b+3

5a-7b=2

Ta thấy 5.6-7.4=2

Nên a=6; b=4

Vậy x=31

2) Theo đề bài : p2 + 4 và  p2 - 4 đều là số nguyên tố

⇒ (p2 + 4) và (p2 - 4) ⋮ 1 và chính nó

 ⇒ (p2 + 4) và (p2 - 4) ϵ {1;2;3;5;7;11;13...}

Ta thấy khi (p2 + 4) = 13 và (p2 - 4) = 5 thì p=3

Vậy p=3

1 tháng 11 2018

p1=2

p2=3

p3=5

p4=7

p1+p2+p3+p4=2+3+5+7=17 là số nguyên tố

đúng thì tk nha

1 tháng 11 2018

Với p1=2 =>p2=3,p3=5,p4=7(do p1<p2<p3<p4)                (1)

Với p1>2 suy ra tất cả chúng đều lẻ.Suy ra tổng của chúng là số chẵn lớn hơn 2 nên chia hết cho 2 hay là hợp số

Suy ra chúgn lần lượt là.........(1)

1: Gọi số cần tìm là a

Theo đề, ta có: a-1 chia hết cho 5 và a-3 chia hết cho 7

mà a nhỏ nhất

nên a=31

2: TH1: p=3

=>p^2+4=13 và p^2-4=5

=>NHận

Th2: p=3k+1

p^2-4=(3k+1-2)(3k+1+2)

=3(k+1)(3k-1) 

=>Loại

TH3: p=3k+2

=>p^2-4=9k^2+12k+4-4

=9k^2+12k=3(3k^2+4k) 

=>Loại