K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)

\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)

\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)

\(A=2x^4y^4z^2\)

\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)

\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)

\(B=8x^7y^{y^8}z^6\)

2 tháng 1 2023

Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)

Tương tự:

\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)

\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)

\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)

2 tháng 10 2020

MTC: (x+y)(x+1)(1-y)

\(=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}=\frac{\left(x+y\right)\left(1+x\right)\left(1-y\right)\left(x-y+xy\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)

\(=x-y+xy\)

Với \(x\ne-1;x\ne-y;y\ne1\)thì giá trị biểu thức được xác định

8 tháng 11 2015

a. Ta có:

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c+a-b\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

và \(ab^2-ac^2-b^3+bc^2=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)=\left(a-b\right)\left(b-c\right)\left(b+c\right)\)

Vậy, \(A=\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}=\frac{c-a}{-c-b}=\frac{a-c}{c+b}\)

24 tháng 6 2017

Thiếu điều kiện xy = 1; x+y khác 0 nhá bn

Bài này tương tự câu 1 ở đây

2 tháng 10 2017

a) Đặt \(x^2+3x+1=y\) khi đó ta có:

\(y\left(y-4\right)-5\)

\(=y^2-4y-5\)

\(=y\left(y-5\right)+\left(y-5\right)\)

\(=\left(y+1\right)\left(y-5\right)\)

Thay \(y=x^2+3x+1\):

\(\left(x^2+3x+1+1\right)\left(x^2+3x+1-5\right)\)

\(=\left(x^2+3x+2\right)\left(x^2+3x-4\right)\)

\(=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x-1\right)+4\left(x-1\right)\right]\)

\(=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x+4\right)\)

b) Biến đổi 3 số sau có chứa x2 + 2x rồi đặt ẩn.

c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+7=y'\)

Khi đó ta đc:

\(y'\left(y'+8\right)+15\)

\(=\left(y'\right)^2+8y'+15\)

\(=y'\left(y'+3\right)+5\left(y'+3\right)\)

\(=\left(y'+5\right)\left(y'+3\right)\)

....

d) \(x^2-2xy+y^2-7x+7y+12\)

Biến đổi chứa x - y rồi đặt ẩn.

2 tháng 10 2017

Đỗ thị như quỳnh: làm tương tự thôi mà, nếu bạn ko hiểu chỗ nào thì nói đi :)