K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 1 2019

Phương trình hoành độ giao điểm:

\(\dfrac{1}{4}x^2+mx-\dfrac{1}{2}m^2+m+1=0\Leftrightarrow x^2+4mx-2m^2+4m+4=0\)

\(\Delta'=4m^2+2m^2-4m-4=6m^2-4m-4\ge0\) (1)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4m\\x_1x_2=-2m^2+4m+4\end{matrix}\right.\)

\(x_1^2+x_2^2=5m\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5m\)

\(\Leftrightarrow\left(-4m\right)^2-2\left(-2m^2+4m+4\right)=5m\)

\(\Leftrightarrow20m^2-13m-8=0\) \(\Rightarrow\left[{}\begin{matrix}m=\dfrac{13+\sqrt{809}}{40}\\m=\dfrac{13-\sqrt{809}}{40}\end{matrix}\right.\)

Thay 2 giá trị của m vào (1) đều ko thỏa mãn

Vậy không tồn tại m thỏa mãn

a: PTHĐGĐ là:

x^2+mx-m-2=0(1)

Khi m=2 thì (1) sẽ là

x^2+2x-2-2=0

=>x^2+2x-4=0

=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)

b: Δ=m^2-4(-m-2)

=m^2+4m+8

=(m+2)^2+4>0 với mọi x

=>(d) luôn cắt (P) tại hai điểm phân biệtx

x1^2+x2^2=7

=>(x1+x2)^2-2x1x2=7

=>(-m)^2-2(-m-2)=7

=>m^2+2m+4-7=0

=>m^2+2m-3=0

=>m=-3 hoặc m=1

Phương trình hoành độ giao điểm là:

\(x^2-mx+2m-4=0\)

\(\Delta=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16=\left(m-4\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-4<>0

hay m<>4

Ta có: \(x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=m^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

PTHĐGĐ là;

x^2-6x+m-3=0

Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48

Để PT có hai nghiệm phân biệt thì -4m+48>0

=>m<12

(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2

=>(x1-1)(-x1x2+x2+x1x2-1)=2

=>x1x2-(x1+x2)+1=2

=>m-3-6+1=2

=>m-8=2

=>m=10

NV
4 tháng 5 2021

1.

Đặt \(\left(x+1\right)^2=t\ge0\) ta được:

\(t^2-3t-4=0\Rightarrow\left[{}\begin{matrix}t=-1< 0\left(loại\right)\\t=4\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

2.

Phương trình hoành độ giao điểm:

\(-\dfrac{2}{3}x^2=mx-1\Leftrightarrow2x^2+3mx-3=0\) (1)

Do \(ac=-6< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{3m}{2}\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\)

\(x_1+x_2=-5\Leftrightarrow-\dfrac{3m}{2}=-5\)

\(\Leftrightarrow m=\dfrac{10}{3}\)

30 tháng 10 2021

PTHĐGĐ là:

\(-x^2=-mx+m-1\)

\(\Leftrightarrow x^2-mx+m-1=0\)

\(\Delta=\left(-m\right)^2-4\cdot1\left(m-1\right)\)

\(=m^2-4m+4\)

\(=\left(m-2\right)^2\ge0\forall m\)

Do đó: Phương trình luôn có nghiệm với mọi m

Áp dụng hệ thức Vi-et, ta có:,

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=17\)

\(\Leftrightarrow m^2-2\left(m-1\right)-17=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-3\end{matrix}\right.\)

9 tháng 3 2022

Hoành độ giao điểm tm pt 

\(x^2-mx+3=0\)

\(\Delta=m^2-4.3=m^2-12\)

Để pt có 2 nghiệm pb khi m^2 - 12 > 0 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=3\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=4\)

Thay vào ta được \(m^2-6-2.3=4\Leftrightarrow m^2-16=0\Leftrightarrow m=4;m=-4\)(tm)

22 tháng 3 2023

x_{1}x_{2} là x1 và x2

 

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)