Tìm x , y biết : ( x-2 )\(^{2018}\) + ( 2y-1 )\(^{2004}\) \(\le\) 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(x-5\right)^{2018}\ge0;\left|2y^2-162\right|^{2018}\ge0\Rightarrow\left(x-5\right)^{2018}+\left|2y^2-162\right|^{2018}\ge0\)
mà \(\left(x-5\right)^{2018}+\left|2y^2-162\right|^{2018}=0\)
Dấu ''='' xảy ra khi x = 5 ; \(2y^2=162\Leftrightarrow y^2=81\Leftrightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\)
Vì \(\left(x-5\right)^{2018}\ge0\\ \left|2y^2-162\right|^{2018}\ge0\\ \)
Suy ra phương trình dc thỏa mãn khi và chỉ khi x-5 = 0 và 2y^2-162=0
\(\left\{{}\begin{matrix}\left(x-5\right)^{2018}=0\\\left|2y^2-162\right|^{2018}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-5=0\\2\left(y^2-81\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=\pm9\end{matrix}\right.\)
ta co (x2-1)2018≥0 voi ∀ x (1)
|2y+3|2019≥0 voi ∀ y (2)
Tu (1) va (2) ⇒ (x2-1)2018+|2y+3|2019≥0 voi ∀ x,y (3)
theo dau bai (x2-1)2018+|2y +3|2019≤0 (4)
Tu (3) va (4) ⇒ (x2-1)2018+|2y+3|2019=0
⇒(x2-1)=0 va |2y+3|2019=0
x2-1=0⇒x2=1⇒x=1 hoac x=-1
|2y+3|2019=0⇒2y+3=0⇒2y=-3⇒y=-3/2
Vay (x,y)=(1;-3/2);(-1;-3/2)
a)\(\left|4-x\right|+\left|x+1\right|=5\)
\(\left|4-x\right|+\left|x+1\right|\ge\left|4-x+x+1\right|=5\)
dấu = xảy ra khi (4-x).(x+1)=0
=> \(-1\le x\le4\)
b) \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=4\)
\(\left|x+1\right|+\left|x+4\right|=\left|x+1\right|+\left|-x-4\right|\ge\left|x+1-x-4\right|=\left|-3\right|=3\)
dấu = xảy ra khi \(\left(x+1\right).\left(-x-4\right)\ge0\)
\(-4\le x\le-1\)
\(\left|x+2\right|+\left|x+3\right|=\left|x+2\right|+\left|-x-3\right|\ge\left|x+2-x-3\right|=\left|-1\right|=1\)
dấu = xảy ra khi \(\left(x+2\right).\left(-x-3\right)\ge0\)
\(-3\le x\le-2\)
eiiiiiii sorry nha thiếu, làm tiếp nè =))
\(để\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=4\)
=> dấu = xảy ra khi đồng thời \(\hept{\begin{cases}\left|x+1\right|+\left|-x-4\right|=3\\\left|x+2\right|+\left|-x-3\right|=1\end{cases}}\)
Vậy \(-3\le x\le-2\)
Do \(\left(x-2y\right)^2\ge0\forall x;y\)
Mà \(|x-2018|+\left(x-2y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-2018=0\\x-2y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2018\\y=1009\end{cases}}\)
\(\left|x-2018\right|+\left(x-2y\right)^2=0\)
Ta có \(\left|x-2018\right|\ge0\forall x,\left(x-2y\right)^2\ge0\forall x,y\)
\(\Rightarrow\left|x-2018\right|+\left(x-2y\right)^2\ge0\forall x,y\)
\(\Rightarrow\left|x-2018\right|+\left(x-2y\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x-2018\\x-2y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2018\\2018-2y=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2018\\y=1009\end{cases}}}\)
Vì \(\left(x-2\right)^{2018}\ge0vs\forall x\) và \(\left(2y-1\right)^{2004}\ge0vs\forall y\)
\(\Rightarrow\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}\ge0\)
Mà \(\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}\le0\) ( theo bài ra )
Suy ra : \(\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2018}=0\\\left(2y-1\right)^{2004}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Vậy \(x=2;y=\frac{1}{2}\)