K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

\(\dfrac{3a-b}{3a+4b}=\dfrac{1}{2}\)

⇒ 2 ( 3a - b ) = 3a + 4b

⇒ 6a - 2b = 3a + 4b

⇒ 6a - 2b - 3a = 4b

⇒ a ( 6 - 3 ) - 2b = 4b

⇒ 3a = 4b + 2b

⇒ 3a = ( 4 + 2 )b

⇒ 3a = 6b

\(\dfrac{a}{b}=\dfrac{6}{3}=2\)

Vậy tỉ số a : b là 2

LINK:https://olm.vn/hoi-dap/detail/26305225182.html

L_I_K_E A_N_D T_I_C_K

3 tháng 1 2019

\(\frac{3a-b}{3a+4b}=\frac{1}{2}\)

\(\Leftrightarrow2\left(3a-b\right)=3a+4b\)

\(\Leftrightarrow6a-2b=3a+4b\)

\(\Leftrightarrow6a-3a=4b+2b\)

\(\Leftrightarrow3a=6b\)

\(\Leftrightarrow\frac{a}{b}=\frac{6}{3}=2\)

\(\Rightarrow a=2b\)

Vậy.......

3 tháng 8 2017

a/

\(\frac{3a-b}{a+b}=\frac{3\left(a+b\right)-4b}{a+b}=3-\frac{4b}{a+b}=\frac{3}{4}.\)

\(\Rightarrow\frac{4b}{a+b}=\frac{9}{4}\Rightarrow9a+9b=16b\Rightarrow9a=7b\Rightarrow\frac{a}{b}=\frac{7}{9}\)

b/

\(\frac{a}{b}=\frac{3}{7}\Rightarrow\frac{a}{3}=\frac{b}{7}=\frac{3a}{9}=\frac{4b}{28}=\frac{3a-4b}{9-28}=\frac{3a-4b}{-19}\)

\(\frac{a}{3}=\frac{b}{7}\Rightarrow\frac{2a}{6}=\frac{3b}{21}\Rightarrow\frac{2a+3b}{6+21}=\frac{2a+3b}{27}\)

\(\Rightarrow\frac{3a-4b}{-19}=\frac{2a+3b}{27}\Rightarrow\frac{3a-4b}{2a+3b}=-\frac{19}{27}\)

2:

a: Áp dụng tính chất của DTSBN, ta được:

a/5=b/-2=(a+b)/(5-2)=12/3=4

=>a=20; b=-8

b: Áp dụng tính chất của DTSBN, ta được:

a/4=b/5=(3a-2b)/(3*4-2*5)=42/2=21

=>a=84; b=105

8 tháng 11 2021

a, Áp dụng tc dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\)

b, Áp dụng tc dstbn:

\(\dfrac{a}{7}=\dfrac{b}{9}=\dfrac{3a-2b}{7\cdot3-2\cdot9}=\dfrac{30}{3}=10\\ \Rightarrow\left\{{}\begin{matrix}a=70\\b=90\end{matrix}\right.\)

c, Gọi 3 phần cần tìm là a,b,c

Áp dụng tc dstbn:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{99}{9}=11\\ \Rightarrow\left\{{}\begin{matrix}a=22\\b=33\\c=44\end{matrix}\right.\)

24 tháng 8 2021

có học mà bạn

24 tháng 8 2021

đặt \(\frac{a}{b}\)=  \(\frac{c}{d}=k\Rightarrow\hept{\begin{cases}k=ab\\k=cd\end{cases}}\)

ta có :   \(\frac{7a-4b}{3a+5b}\)\(\frac{7ak-4b}{3ak-5b}=\frac{a\left(7k-4\right)}{a\left(3k-5\right)}=\frac{7k-4}{3k-5}\left(1\right)\)

\(\frac{7c-4d}{3c+5d}\)=\(\frac{7ck-4d}{3ck+5d}\)\(\frac{c\left(7k-4\right)}{c\left(3k+5\right)}\)\(\frac{7k-4}{3k+5}\)(  2 ) 

từ (1) và ( 2) => \(\frac{7a-4b}{3a+5b}=\frac{7c-4d}{3c+5d}\)( điều phải chứng minh ) 

3 tháng 12 2019

Ta có: \(\frac{3a+4b}{3a-4b}=\frac{3c+4d}{3c-4d}\)

\(\Rightarrow\frac{3a+4b}{3a-4b}-1=\frac{3c+4d}{3c-4d}-1\)

\(\Leftrightarrow\frac{8b}{3a-4b}=\frac{8d}{3c-4d}\)

\(\Rightarrow b\left(3c-4d\right)=d\left(3a-4b\right)\)

\(\Leftrightarrow3bc=3ad\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

4 tháng 9 2015

Xem ở Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

21 tháng 8 2016

Ta đặt:\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Khi đó: \(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)

            \(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\)

\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(=\frac{2k+5}{3k-4}\right)\)