Happy new year mọi ngưòi và "MY IDOL BTS"! Chúc mọi người mạnh khoẻ, học tập và làm việc thật tốt, gặt hái được nhiều thành công trong năm 2019 này và tiếp tục hoạt động sôi nổi trên cộng đồng học 24h nhé!
HAPPY NEW YEAR NHA MỌI NGƯỜI!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em xin giải bài toán kia nhé :)
Trước hết ta có hằng đẳng thức:
\(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=\left(x+y\right)^5\)
Biến đổi hằng đẳng thức trên:
\(x^5+y^5+5xy\left(x^3+2x^2y+2xy^2+y^3\right)=\left(x+y\right)^5\)
\(\Rightarrow x^5+y^5+5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]=\left(x+y\right)^5\)
\(\Rightarrow x^5+y^5+5xy\left(x+y\right)\left(x^2+xy+y^2\right)=\left(x+y\right)^5\) (*)
Quay lại bài toán trên:
Theo BĐT Cauchy ta có:
\(\left\{{}\begin{matrix}\sqrt{xy}\le\dfrac{x+y}{2}\left(1\right)\\2xy\le x^2+y^2\Rightarrow3xy\le x^2+xy+y^2\Rightarrow xy\le\dfrac{x^2+xy+y^3}{3}\left(2\right)\end{matrix}\right.\)
Vì cả 2 vế của BĐT (1) và (2) đều dương nên lấy \(\left(1\right).\left(2\right)\) ta được:
\(xy\sqrt{xy}\le\dfrac{1}{6}\left(x+y\right)\left(x^2+xy+y^2\right)\)
\(\Rightarrow x^5+2023xy.xy\sqrt{xy}+y^5\le x^5+\dfrac{2023}{6}xy.\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\left(3\right)\)
Đặt \(A=x^5+\dfrac{2023}{6}xy.\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\)
\(=\dfrac{6x^5+2023xy\left(x+y\right)\left(x^2+xy+y^2\right)+6y^5}{6}\)
\(=\dfrac{6\left[x^5+5xy\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\right]+1993xy\left(x+y\right)\left(x^2+xy+y^2\right)}{6}\)
Áp dụng (*) ta có:
\(A=\dfrac{6\left(x+y\right)^5+1993xy\left(x+y\right)\left(x^2+xy+y^2\right)}{6}\left(4\right)\)
Ta có: \(xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
\(=\dfrac{1}{3}.3xy\left(x^2+xy+y^2\right)\left(x+y\right)\)
Theo BĐT Cauchy ta có:
\(3xy\left(x^2+xy+y^2\right)\le\left[\dfrac{3xy+\left(x^2+xy+y^2\right)}{2}\right]^2=\left[\dfrac{\left(x+y\right)^2+2xy}{2}\right]^2\left('\right)\)
\(xy\le\left(\dfrac{x+y}{2}\right)^2=\dfrac{\left(x+y\right)^2}{4}\left(''\right)\)
Từ (') và ('') ta có:
\(3xy\left(x^2+xy+y^2\right)\le\left[\dfrac{\left(x+y\right)^2+2.\dfrac{\left(x+y\right)^2}{4}}{2}\right]^2=\left[\dfrac{3}{4}\left(x+y\right)^2\right]^2=\dfrac{9}{16}\left(x+y\right)^4\)
\(\Rightarrow xy\left(x^2+xy+y^2\right)\le\dfrac{3}{16}\left(x+y\right)^4\)
\(\Rightarrow xy\left(x+y\right)\left(x^2+xy+y^2\right)\le\dfrac{3}{16}\left(x+y\right)^5\left(5\right)\)
Từ (4), (5) ta có:
\(A\le\dfrac{6\left(x+y\right)^5+1993.\dfrac{3}{16}\left(x+y\right)^5}{6}=\dfrac{\dfrac{6075}{16}\left(x+y\right)^5}{6}=\dfrac{2025}{32}\left(x+y\right)^5\)
\(\Rightarrow A\le\dfrac{2025}{32}\left(x+y\right)^5\) hay
\(x^5+\dfrac{2023}{6}xy\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\le\dfrac{2025}{32}\left(x+y\right)^5\left(6\right)\)
Từ (3), (6) ta có:
\(x^5+2023x^2y^2\sqrt{xy}+y^5\le\dfrac{2025}{32}\left(x+y\right)^5\)
\(\Rightarrow\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}\le\sqrt[5]{2025}.\dfrac{x+y}{2}\left(1'\right)\)
Mặt khác theo BĐT Cauchy ta có:
\(\sqrt{xy}\le\dfrac{x+y}{2}\left(2'\right)\)
Vì cả 2 vế của (1') và (2') đều dương nên lấy \(\left(1'\right).\left(2'\right)\) ta được:
\(\sqrt{xy}.\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}\le\sqrt[5]{2025}.\dfrac{\left(x+y\right)^2}{4}\)
\(\Rightarrow\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(x+y\right)^2}\left(7\right)\)
CMTT ta cũng có:
\(\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(y+z\right)^2}\left(8\right)\)
\(\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(z+x\right)^2}\left(9\right)\)
Lấy \(\left(7\right)+\left(8\right)+\left(9\right)\) rồi nhân mỗi vế của BĐT mới cho \(\left(x+y+z\right)^2\) ta được:
\(\left(x+y+z\right)^2\left(\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}+\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}+\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\right)\)\(\ge\dfrac{4}{\sqrt[5]{2025}}\left(x+y+z\right)^2\left[\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\right]\left(10\right)\)
Theo BĐT Cauchy ta có:
\(\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\ge3.\sqrt[3]{\dfrac{1}{\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2}}\)
\(\ge3.\sqrt[3]{\dfrac{1}{\left[\left(\dfrac{x+y+y+z+z+x}{3}\right)^3\right]^2}}\)
\(=3.\sqrt[3]{\dfrac{1}{\left[\dfrac{2}{3}\left(x+y+z\right)\right]^6}}=3.\dfrac{1}{\left[\dfrac{2}{3}\left(x+y+z\right)\right]^2}=\dfrac{27}{4\left(x+y+z\right)^2}\)
\(\Rightarrow\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\ge\dfrac{27}{4\left(x+y+z\right)^2}\left(11\right)\)
Từ (10) và (11) ta có:
\(\left(x+y+z\right)^2\left(\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}+\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}+\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\right)\)
\(\ge\dfrac{4}{\sqrt[5]{2023+2}}.\left(x+y+z\right)^2.\dfrac{27}{4\left(x+y+z\right)^2}=\dfrac{27}{\sqrt[5]{2023+2}}\left(đpcm\right)\)
Dấu "=" xảy ra khi \(x=y=z\)
lâu rồi không gặp a, chúc mừng năm mới a, mà cái phương trình này lớp 9 còn e mới lớp 8 :)))))))))))))))
Ngày đầu tiên đi học
Cô giáo: em tên j
Em: e ko biết
Cô giáo: thế em về hỏi lại bố mẹ đi nha
Em: vâng
Về nhà
Con: bố ơi con tên j
Bố: đệt mẹ mày
Con: mẹ ơi con tên j
Mẹ: đệt bố mày
Cháu: ông ơi cháu tên j
Ông: cây đinh
Em: anh ơi em tên j
Anh: đa_vít_bếch_khăm
Em: chị ơi em tên j
Chị: sây_ô_dia
Lên lớp
Cô giáo: em đã biết tên mình chưa
Em: đệt mẹ mày
Cô giáo: em vừa nói j cơ
Em: đệt bố mày
Cô giáo: em nghĩ tôi là ai
Em: cây đinh
Cô giáo: em nghĩ em là ai
Em: đa_vít_bếch_khăm
Cô giáo: em ra ngoài ngay cho tôi
Em: sây_ô_dia
Hết rồi K đi cho đỡ mất công đọc !
Cảm ơn bạn nhiều nha !!! HAPPY NEW YEAR 2018 !!! NĂM MỚI RỒI MÌNH CHÚC MỌI NGƯỜI LUÔN MAY MẮN NHA ! TRONG NĂM MẬU TUẤT NÀY MÌNH CHÚC CÁC BẠN NGÀY CÀNG HỌC GIỎI HƠN VÀ MÌNH CŨNG MONG MỌI NGƯỜI SẼ KHỎE MẠNH NHÉ !!! NĂM MỚI MAY MẮNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN !
Thanks .Chúc bạn năm mới luôn mạnh khoẻ ,hạnh phúc ,an khang ,thịnh vượng và có nhiều niềm vui trong cuộc sống!!!
cảm ơn bạn ,mình chúc bạn mạnh khỏe ,hạnh phúc ,xinh xắn nhé phương
Mk cảm ơn bạn mk cũng chúc bạn năm mới an khang - thịnh vượng gia đìng hạnh phúc nhé ( HAPPY NEW YEAR )
Trịnh Ngọc Quỳnh Anh Happy New Year chúc năm ms vv
chúc năm mới vui vẻ,dù lời chúc hơi muộn màng