CMR:Nếu \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\) thì \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
đề bài cuối trường mik đây nek!các bài khác tính toán thông thường thôi!trả lời nha!nếu 15:30 ko ans thì mik sẽ công bố đáp án.ai ans đầu tiên=6SP
nhân từng hạng tử của giả thiết với 2 rồi cộng và trừ từng cái một là ra còn gì nx
Trình bày dài lắm
Ta có : \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
=> \(\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)
=> \(\frac{a+2b+c}{x}=\frac{2\left(2a+b-c\right)}{2y}=\frac{4a-4b+c}{z}=\frac{a}{x+2y+z}\)(1)
=> \(\frac{2\left(a+2b+c\right)}{2x}=\frac{2a+b-c}{y}=\frac{4a+4b+c}{z}=\frac{b}{2x+y-z}\)(2)
=> \(\frac{4\left(a+2b+c\right)}{4x}=\frac{4\left(2a+b-c\right)}{4y}=\frac{4a-4b+c}{z}=\frac{c}{4x-4y+z}\)(3)
Từ (1);(2);(3) suy ra \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4b+z}\)