K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

a: Xét tứ giác ABMN có 

AN//BM

AN=BM

Do đó: ABMN là hình bình hành

mà AB=BM

nên ABMN là hình thoi

12 tháng 12 2021

yeu

27 tháng 9 2018
6 tháng 12 2015

a) Chứng minh tứ giác MBKD là hình thang.( bạn tự vẽ hình nhé!)
- Đầu tiên CM tứ giác MBND là hình bình hành.
Vì ABCD là hình bình hành  AD = BC  AN = ND = BM = MC
Và  AD // BC=>  ND // BM
Xét tứ giác MBND, ta có:
ND // BM 
ND = BM
 Tứ giác MBND là hình bình hành. 
 NB // MD . Mà NB giao với MD = {K}=>  B, N , K thẳng hàng.
Xét tứ giác MBKD, ta có:
NB // MD
B, N , K thẳng hàng
=> MD // BK
 =>Tứ giác MBKD là hình thang ( đpcm ).

b)
Vì P thuộc BK, Q thuộc MD mà BK // MD  QM // PN ( 1 )
Vì P thuộc AM, Q thuộc NC  PM // QN (2)
Từ (1), (2)=>  PMQN là hình bình hành. ( 3 )
Theo CM ở câu a)  ANMB là hình thoi ( có 4 cạnh bằng nhau )
 AM vuông góc với BN. (4)
Từ (3), (4)  PMQN là hình chữ nhật.
c) Để PMQN là hình vuông thì hình bình hành phải có thêm điều kiện là góc A = 90o
Nếu A = 90o  thì tứ giác ANMB là hình vuông=>  AM vuông góc với BN
Theo tính chất đường chéo của hình vuông=>  PN = PM
 Hình chữ nhật PMQN có 2 cạnh kề bằng nhau nên nó sẽ là hình vuông ( đpcm )

6 tháng 12 2015

 

của luckybaby_98 trên diễn đàn học mãi giống y chang luôn, mih cx có nick trên diễn đàn học mãi mak